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Abstract—In this paper a new PCA-based positioning sen-
sor and localization system for mobile robots to operate in
anstructured environments (e.g. industry, services, domestic,
...) is proposed and experimentally validated. The positioning
system resorts to principal component analysis (PCA) of images
acquired by a video camera installed onboard, looking upwards
to the ceiling. This solution has the advantage that the need
of selecting and extracting features is avoided. The principal
components of the acquired images are compared with previ-
ously registered images, present in a reduced onboard image
database and the position measured is fused with odometry
data. The optimal estimates of position and slippage are
provided by a Kalman filter, with global stable error dynamics.
The experimental validation reported in this work focus on
the results of a set of exhaustive experiments carried out in
a real environment, where the robot travels along straight
lines. A small position error estimate was always observed,
for arbitrarily long experiments, and slippage was estimated
accurately in real time.

- 1. INTRODUCTION

The problem of localization has been a great challenge to
the scientific community in the area of mobile robotics; see
[6], [3] and the references therein. As happens with persons
or animals, for a robot to navigate from a point to another it
is of great importance its ability to look at the environment
and rapidly answer the following questions: where am 1? and

what am I facing? !

"~ SLAM (Simultaneous Localization And Mapping) is a
process by which a mobile robot can build a map of an
environment and at the same time to use this map to estimate
its localization. In SLAM, both the trajectory of the platform
and the localization of all landmarks are estimated online
without the need for any a priori knowledge of localization
6], [19]. However, substantial issues remain to be solved
in practice. One of the issues that remain open is that of
solutions relying on landmarks or on any other features
that the robot may sense in the environment, and will
subsequently be used for robot localization. In practice, given
one environment, there is no guarantee that the same features
will be present in the environment on subsequent visits of
the robot to the same localization (loop closure problem).
. For instance, fast corners [24] are a very efficient way to
detect features in an image but the number of corners actually

C. Christo, D. Valério, M. Ramalho and C. Cardeira are with IDMEC
! Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco
Pais 1, 1049-001 Lisboa Portugal, cchristo@dem.ist.utl.pt,
{duarte .valerio,mramalho,carlos. cardeira}@ G
mtl.pt

F. Carreira and J. Calado are with IDMEC / Instituto Superior Técnico,
Technical University of Lisbon and with Instituto Superior de Engenharia
4 Lisboa / IPL, R. Conselheiro Emidio Navarro 1, 1959-007 Lisboa,
{fcarreira, jcalado}@dem.isel.ipl.pt

P. Oliveira is with ISR / Instituto Superior Técnico and IDMEC /
Instituto Superior Técnico, Technical University of Lisbon, address as above,
p.oliveira@dem.ist.utl.pt

Proceedings Robotica’2012
978-972-98603-4-8

Experimental Validation of a PCA-Based Localization System for
Mobile Robots in Unstructured Environments

F. Carreira, C. Christo, D. Valério, M. Ramalho, C. Cardeira, J. M. F. Calado, and P. Oliveira

found may depend on many tuning parameters and different
corners may appear in different images taken from the same
localization at different times. Random Sample Consensus
(RANSAC) is considered the state of the art technique to
keep track of features while disregarding outliers but in
practice all these strategies rely on some structure of the
environment [2], [16], [7].

This paper follows an alternative approach resorting to
Principal Component Analysis (PCA) that actually does not
depends on any predefined structure of the environment.
Of course, there should always be something to distinguish
data acquired in one location to data acquired in another
location but no previous assumptions on the predefined
structure of the environment needs to be considered. The
PCA data analysis corresponds to the computation of the
data orthogonal components that will make each dataset
different. Hence, the localization is defined based on the
PCA of the large amount of data taken from the unstructured
environment. Experimental results in 1D are shown, proving
the efficacy of the approach.

A. Current Practices

The use of vision systems for robot localization is very
common [22], [21] due to the ability to obtain information
about the environment. Many vision systems compute the
robot pose (position and attitude) from features of the envi-
ronment, either from the entire image [11], extracting lines
[15], simply getting points of interest [12], [10], or extracting
scale-invariant features [17]. The computational complexity
of such algorithms to obtain features is not negligible: thus
the implementation in real-time systems still demands the
search for other approaches of reduced complexity.

Very successful implementations of visual odometry are
presented in [21], where a robot was able to localize itself
outdoors based on a minimum number of singular points that
have to be present in the environment. Although many robots
use cameras to look around itself to get its global pose in
the environment [23], [10], [14], others use a single camera
looking upward [12], [8], [25]. The use of vision from the
ceiling has the advantage that images can be considered
without scaling, i.e. a 2D image problem results and will
be pursued in this work.

B. PCA-based localization and optimal estimation

Since feature based techniques are computationally heavy,
some researchers have been working to find methods to make
this process more efficient. To achieve reduced complexity
algorithms, the use of PCA in mobile robots for self-
localization has been explored [14], [18], [1]. However,
all these approaches use front or omnidirectional cameras,
causing the algorithms to address problems of occlusion or
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comparison with images in different planes. In [20]. PCA
was used for terrain reference navigation of underwater
vehicles. The PCA-based localization system that we present
is this work corresponds to a experimental validation of the
one proposed in [20], using a Dubins Car eguipped with a
video camera looking upwards to the ceiling.

Beyond the problems of image processing for self-
localization, another challenge is to deal with the fusion
of the PCA-based position with the odometry data that is
given by the robot kinematics. Mobile robot kinematics (e.g.
Dubins car) are in general non linear. This fact prevents
the direct use of a Kalman Filter, which is a linear optimal
estimator. To tackle this problem, many localization systems
use the Extended Kalman Filter (EKF) with well charac-
terized optimality and stability limitations. Even though it
can give a reasonable performance, the EKF may diverge in
consequence of wrong linearisation or sensor noise.

For the purpose of this paper, the Dubins Car model is
restricted to one-dimensional movement, thus avoiding the
non-linear model issues mentioned above. Moreover, the
filter also estimates the slippage that is eventually present
in the reality. Many researchers tend to neglect slippage:
our approach addresses the problem explicitly. As slippage
is inevitable, we append a state to our model to express
the slippage explicitly. The filter estimates both slippage
and robot localization. Furthermore, the optimal estimate is
achieved, under the assumption that disturbance noise can
be modelled by Gaussian distributions, with global stable
error dynamics can be obtained (see [20], where however no
experimental results are given). Further work will be carried
out in the near future to deal with 2D operation of the Dubins
car resorting to the recent results that can be found in [4].

C. Advantages and drawbacks

The proposed PCA-based position sensor and localization
estimation has the following advantages:

e The robot is able to self-locate in an indoor environ-
ment, only with onboard sensors (no external sensors
or landmarks are required);

o The algorithm is fast, thus it consumes very few com-
putational resources;

o The database of images stored onboard the mobile robot

- is of reduced size, when compared with the total number
of images considered;

e The memory to allocate for the database storage is
flexible and related with the required positioning error
accuracy;

e No hypothesis is made about specific features in the
environment: thus this system can operate in an un-
structured environment where the only requirement is
that images must be different in each location;

e Under Gaussian assumption for the disturbances, the

localization system estimates in real time the position
and slippage with global stable error dynamics.
Some of the limitations for the proposed approach include:
o The robots should work in buildings with ceilings where
rich information can be found (e.g. building-related
systems such as HVAC, electrical and security systems,
etc.);
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= The ceilings should be static: the system cannot
used outdoors as the sky is far from static and chans
randomly;
« The system is formulated in a digital discretised vers
as well as the PCA approach pursued.

A general limitation of all vision-based systems is
sensitivity relative to lighting conditions.

This paper is organized as follows: in section II, the ¢
cipal component analysis technique is introduced in detail.
section III, the mobile robot kinematics model is prese:
and section IV a set of experimental results are reporied
validate and assess the performance of the proposed
based positioning sensor and localization system, resorting
a Kalman filter. Conclusions and future work are presemss
in section V.

II. PRINCIPAL COMPONENT ANALYSIS

In this section the fundamentals of the positioning
proposed in this work will be introduced. The prope
methodology resorts to optimal signal processing technic
namely PCA, based on the Karhunen-Loéve (KL) trans
to obtain a nonlinear positioning sensor. Considering &
linear transformations, PCA allows for the optimal a 3
imation to a stochastic signal in the least squares s
Furthermore, it is a well known signal expansion techs
with uncorrelated coefficients for dimensionality reduc
These features make the KL transform interesting for mas
signal processing applications such as data compress
image and voice processing, data mining, exploratory &
analysis, pattern recognition and time series prediction. &
a thorough introduction to this topic and a number of &
of the art applications see [13].

Consider a set of M stochastic signals x; € R™. &
1,..., M, each corresponding to the stacked version of
image acquired with the video camera installed onboard
mobile robot and represented as a column vector with me
i M ZZ 1 X;. The purpose of the KL transform i is
find an orthogonal basis to decompose .a stochastic sig
x, from the same original space, to be computed as x
Uv + m,, where vector v € RY is the projection of =
the basis, i.e. v = UT (x—m,). Matrix U = [u; u ...
should be composed by the IV orthogonal column vectors
the basis, verifying the eigenvalue problem

Rmuj = /\jllj, ] = 1, saey N,

where R, is the covariance matrix, computed from the
of M experiments using

Assuming that the elgenvalues are ordered, i.e. \; > Az

> Ay, the choice of the first n <« N princig
components leads to an approximation to the stochas
signals given by the ratio on the covariances associais
with the components, i.e. >, An/ > y An. In many appls
cations, where stochastic multidimensional signals are &
key to overcome the problem at hand, this approximatic
can constitute a large dimensional reduction and thus
computational complexity reduction.
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The advantages of PCA are threefold: i) it is an opti-
mal (in terms of mean squared error) linear scheme for
compressing a set of high dimensional vectors into a set
of lower dimensional vectors; ii) the model parameters can
be computed directly from the data (by diagonalising the
ensemble covariance); and iii) given the model parameters,
projection into and from the bases are computationally
inexpensive operations, ~ O(nN). These advantages suit our
problem especially, as the computation power, energy and
data storage onboard should be kept as reduced as possible
to augment the operation interval and reduce the cost of the
systems onboard.

(e.g. industrial automation or robotic office applications),
where a navigation system to be installed on one or more
mobile robots must be developed and operated. In this
scenario it is considered that there is data available allowing
to develop a positioning system that recognizes the actual
position of the robot in real time. The steps to implement a
PCA-based positioning sensor using this visual data will be
outlined next.

Prior to the deployment of the robots, the visual data
of the area under consideration should be partitioned in
mosaics with fixed dimensions N, by N,,. After reorganizing
this two-dimensional data in vector form, e.g. stacking the
columns, a set of M stochastic signals x; € RN, N = Ny Ny
results. The number of signals M to be considered depends
on the mission scenario and on mosaic overlapping. The KL
transform can be computed, using (1)~(2); the eigenvalues
must be ordered; and the number n of the principal com-
ponents to be used should be selected, according with the
required level of approximation.

The following data should be recorded for later use:

1) the data ensemble mean mg;
2) the matrix transformation with n eigenvectors

U=ty - 1, 3)

3) the projection on the selected basis of all the mosaics,
computed using

v; =Ul(x; —my), i=1,...,M; @)

4) the coordinates of the center of the mosaics

(wi:yi)a 2:1,,M (5)

During the mission, at the time instants ¢, = Lk (where L
is a positive integer), the acquired images will constitute the
input signal x to the PCA positioning system. The following
tasks should be performed:

a) compute the projection of the signal x into the basis,
using
v =Uy (x - my); ©

b) given an estimate of the current horizontal coordinates
of the robot position Z and ¢, provided by the navigation
system, search on a given neighborhood & the mosaic
that verifies

memT-hMMﬂb<&7WA=mF“V_Wh§(D
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Assume that scenario in the area of indoor mobile robotics

c) given the mosaic ¢ which is closest to the present
input, its center coordinates (zi,y;) will be selected as
the z,, and y,, measurements.

The relation £ between 7pca and the positioning sensor
error covariance R (observation noise) to be used in the Ho

estimation problem
R=f TPCA (8)

will be chosen according to the chosen environment. Note
that the image-based PCA positioning system described
above can be straightforwardly extended to incorporate data
from other sensors installed onboard mobile robots such as
magnetometers and range information from time-of-flight
cameras or structured-light 3D scanners (e.g. Microsoft
Kinect).

III. MODEL

The experimental validation of the proposed positioning
system was performed resorting to a low cost mobile robotic
platform [5], with the configuration of a Dubins car. This
platform has a PC laptop that controls the motors through a
closed loop motor controller connected by a USB and has a
webcam pointing upwards to the ceiling (see figure 1). The
low replication cost for these platforms will be instrumental
during the future tasks envisioned relying on cooperation
and multi-agent systems (mentioned among future work In
section V).

Fig. 1. Mobile robot platforms used for experimental validation

The mobile robot kinematic model that describes the
movement in a straight line (1D) is

t=u+b+m ®)
b=0+ e (10)

considering the following assumptions:
« the slippage velocity is constant or slowly varying (i.e.
b=20);
« the noise in the actuation (motors are in closed loop)
and the slippage velocity are assumed as zero-mean
uncorrelated white Gaussian noise, y1; ~ N (0,07).

Expressing the model dynamics in a state-space system with
x=[z b7,

o [3 3eei]oe 2 2][5]

=1 0lx+ 12)
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The output of this system y is the positioning sensor
measurement described in the previous section. Since the
position estimator is processed in a digital processor. the
discrete model is obtained assuming that the vehicle velocity
u 1s constant (zero order hold assumption) between two
consecutive processing times, resulting

x(k+1)=[(1] {]x(k)+[g]u(k)+[T T/"’] u(k)

(13)

y(k) = [1 0] x(k) + (k) (14

The design of a linear time-invariant Kalman filter for the
underlying model described above is by now classic and the
reader is referred to [9].

IV. EXPERIMENTAL RESULTS

The mobile robot self-localization methodology proposed
in this work is tested for the aforementioned mobile robot
travelling along a 3 m length straight line. Ceiling images are
captured with a constant distance and referenced, allowing
for the creation of the PCA eigenspace (the image database
referred in the previous sections of the paper) to capture
the principal components of the environment. To create the
eigenspace, gray scale images with 320 by240 pixels are
subsampled (1 : 25) and transformed into vectors, x; €
RY™, i = 1,...,M, where M stands for the number of
images and NV stands for the number of pixels of each image.
(Notice that since this is a 1D experiment only one coordinate
is necessary, along the direction of movement.)

The covariances to be used in the Kalman Filter design
were considered as constant and were obtained considering
Q = Q(k) and R = R(k) as the covariance error in the
actuation and the pose estimator, respectively. The value of
Q = 4.1 x 10~% m? was obtained measuring the covariance
error of the robot motion along one predefined path. The
value of R = 6.8 x 1072 m? was obtained measuring the
covariance error of the pose estimator (position given by the
PCA positioning sensor) when the robot moves along one
path with images in the eigenspace. This process and sensor
noises lead to a Kalman filter gain K = [0.0429 0.0188]7

To study the PCA positioning sensor performance, 31
ceiling images (with a distance of 0.1 m) were captured
with the mobile robot travelling with a constant velocity
of 0.125 m/s along the straight line, as mentioned above.
The images have been subsampled with a step of 5 pixels
in width and height to reduce the amount of processing data
(1 : 25). Analysing the eigenvalues and selecting components
that explain the variability of the images in an excess of 80%,
results on an eigenspace (image database) of 4 eigenvectors.

A. Monte Carlo Performance Tests

To assess the mobile robot self-localization methodology
proposed, a Monte Carlo test composed of 10 experiments as
described above has been repeated. Images were captured at
20 Hz and the PCA-based positioning sensor was acquired;
figure 2 gives the localization results obtained in one of
those experiments. The results show that the PCA algorithm
provides a good approximation to the real robot localization.
However, some discontinuities in the acquired robot position
are observed. Anyway, the deviations observed in instants
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PCA position & KF localization estimates — Results of test no 2

Desired position
PCA position
| ——KF estimated localization
15 20

0
Time (s)

Fig. 2. Results of PCA-based positioning sensor and localization ests
from Kalman filter

PCA position error

g °2 |
5 OrE T 2
5 —0.2[ E

~0.4 i ‘ \

0 5 10 15 20

KF localization error

U : 23—
g 02 = -
5 0‘ S rsessoues T T e T —
§ —0.2t -
—0.4 i =

0 5 0 15 20

Time (s)
Fig. 3. Localization errors of tests along a straight line

6 s, 13 s and 22 s are due to disturbances. It is important.
remark that the results from the Kalman filter smooth out &
position errors present in the PCA-based positioning
The estimated errors for 5 experiments are depicted in fig
3.

PCA posmcn & KF localization estimates when robot starts in wrong postion — 1m ahead

Desired position
PCA analysis
— Kalman result |

12 14 16

o 2 4 6 8 10 12 e =8
Time (s)

Fig. 4. Results of positioning system whcn the robot starts 1 m ahead
the usual position

B. Stability Validation

A second test was performed to assess the posmo
system global stability when the initial position coordinaie
do not match the robot real initial position. Thus it is possibs
to check that the estimator is able to correct the inits
position error, as predicted by the stability properties
the Kalman filter. In this case, the robot was placed 1
ahead of the usual initial position. An Extended Kalman fili=
could easily diverge: under such experimental conditions
The eigenspace was again created with a distance betwes
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acquire images of 0.1 m (same 31 images as in the previous
set of tests) and the results show that the positioning system
needs less than 1.5 s to provide an accurate estimate of the
mobile robot localization. Considering that the robot moves
at a constant velocity of 1.5 m/s, the positioning system is
able to identify the mobile robot real position at the same
time that the second image is captured to the eigenspace
(figure 4).

PCA position & KF localization estimates with induced slippage of 0.1m/s — Results of test no 2

o) e Desired position
z1 - = - PCA position
£ _//f*/"/ ||~ KF estimated localization
% 5 10 15 20
045 . : -
£ 02 el 1
T . ormrErrrsl] e e ]
g : LIRS P p S e ]
= —0.2 i i
-0.4 , |
0 5 0 5 20
Time (s)
Fig. 5. Results of the positioning system when the robot moves with a

slip velocity of 0.1 m/s

PCA position error with wheels slippage of 0.1m/s

0A4r T T |
g 02r : g 1
E 0 ft At
m-02- Ty j
—0.4- | e e L i
0 5 10 15 20
KF localization error with induced slippage of 0.1m/s
v : ‘ =0
g 02 = T T
T | o e — = g
5-02-
-0.4t i T | -
0 5 10 15 20
Time (s)
Fig. 6. Error of positioning system when the robot moves with a slip

velocity of 0.1 m/s

PCA position & KF localization estimates with induced slippage of 0.2m/s — Results of test no 2
3 T T T =

£2 e T
£ * 1 { Desired position
G 1k e PCA positi
2 e = position
P o= i . : e KE estimated localization|
0 5 10 15 20
0.4i» 2 T 3
Ol s s 1
5 0 e (R S e e e
| —0.2r 2
—0.4k ; i i i =
0 5 -3 20

0
Time (s)

Fig. 7. Results of the positioning system when the robot moves with a
slip velocity of 0.2 m/s

C. Real-time Slippage Estimation

As a further assessment of the localization system perfor-
mance, a set of tests have been conducted considering that
the mobile robot experiences a constant, artificially imposed,
wheel slippage. Two tests are reported considering that the
mobile robot travels with a slippage in the wheels, that leads

Proceedings Robotica’2012
978-972-98603-4-8

PCA position error with wheels slippage of 0.2m/s
04~ T =
02- ‘ 1

Error (m)
4
N o

0 5 10 15 20

KF localization error with induced slippage of 0.2m/s
047 !

[—1—2-3-4-—5

rror (m)
\
f

Time (s)

Fig. 8. Error of positioning system when the robot moves with a slip
velocity of 0.2 m/s

to a constant velocity below 0.1 m/s and 0.2 m/s, respectively
in figures 5 and 7, relative to the commanded velocity. The
estimation errors are depicted respectively in figures 6 and 8.
Results show that the localization system is able to accurately
estimate the mobile robot real position in all situations. The
Kalman filter estimates present initial higher errors for higher
values of slippage (above 0.2 m/s). After a transient of about
5 s (see figure 9), the localization system is able to estimate
and correct the wheels slippage in real-time and the results
obtained in the remaining of the experiments have similar
performance as the ones obtained in the experiments without

slippage.

Estimation of induced slippage

Without slippage
Slippage: 0.1m/s
Slippage: 0.2m/s

DSt g s = E 5

Bias (m/s)
=

—0.1- ]
-0.15-
—0.2-
025 5 10 20
Time (s)
Fig. 9. Results of bias in Kalman Filter for different wheels slippery

velocity

D. Preliminary PCA Performance Assessment

PCA has a number of parameters that must be selected
prior to the deployment of the positioning and localization
system. A trade-off will always be found relating the number
of images in the database (eigenspace size) and the accuracy
of the positioning sensor proposed. A preliminary study on
the impact of changing these parameters will be reported
in this section. The results from a set of tests where the
image acquisition step varies in the interval [0.05 0.4] m, i.e.
using between 61 and 8 images, respectively, were performed
creating different eigenspaces. Hence, the mobile robot po-
sitioning system performance has been tested considering an
increase between the eigenspace points used (Table I).

Results show that the PCA positioning system with
Kalman Filter were able to identify the correct mobile robot
position based on ceiling captured images, even when the
distance between knowledge points is increased, reducing
the number of images in the eigenspace (figure 10). For a
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TABLE I
PCA POSITIONING SENSOR AND LOCALIZATION SYSTEM WITH
DIFFERENT IMAGE ACQUISITION STEPS

Distance between  Sample Number of PCA localization ~PCA with a Kalman
images (m) time (s)  images in PCA 02 (m2) Filter 02 (m2)
0.05 04 61 0.00545 0.00330
0.1 0.8 31 0.00683 0.00436
0.2 1.6 16 0.01063 0.00525
0.3 24 11 0.01360 0.00341
04 3.2 8 0.06428 0.03844

distance between frames up to 0.3 m, results show that the
position error is small, not exceeding 0.15 m. For longer
distances between frames, e.g. 0.4 m, the position estimate
accuracy degrades gracefully. However, even in this case,
the error is below 0.4 m, which allows to conclude that the
error is less than the granularity associated with the image
acquisition intervals.

Localization results for different size of the PCA database
T

)

61 images|

e Lo

= e 31 images

B S T 16 images

B "’“", 2 ] 11 images
0 5 10 15 20| 8images)

0
Time (s)

Fig. 10. Results of PCA together with a Kalman Filter

V. CONCLUSIONS

A new positioning sensor and a localization system for
mobile robots to operate in unstructured environments is
proposed and experimentally validated along a straight line
(ID). The positioning sensor resorts to PCA, from the
images acquired by a video camera installed onboard, look-
ing upwards to the ceiling. Several tests were performed
namely: i) Monte Carlo performance study, ii) global stability
validation, iii) real-time slippage estimation, and iv) PCA
performance assessment. All tests were successful and allow
to conclude that the proposed approach can be useful in a
number of mobile robotic applications.

This paper represents the initial step towards a multi-agent
system based architecture where a large set of mobile robots
will be able to cooperate to perform navigation and formation
tasks, featuring obstacle avoidance, human interaction and
search and rescue activities. For that purpose, the next step
taken was to consider the robots in 2D. Currently, the
theoretical part of 2D version has been developed, resorting
to a set of recent results reported in [4], and will be subject
to intensive validation tests in the near future.
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