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Abstract—In this paper a multi-modal localisation system,
that estimates a robot position in indoor environments using
only on-board sensors, namely a webcam and a compass, is
presented. Ceiling lights are used as beacons. Their position
is previously known or self-learned during normal operation.
Markov Localisation (ML) is both simulated and experimentally
validated. For the prediction step it combines IMU (Inertial
Measurement Unit) data and image parameters to compute the
attitude of the robot. The update step is then calculated by
measuring the distance to possibly visible ceiling lights. The
experimental validation of the proposed solution shows that the
robot position estimate converges to its real position and the error
is kept within decimetres of magnitude.

I. INTRODUCTION

Mobile robots are a widespread research area. Some indus-
trial mobile robots, namely AGV (Automatic Guided Vehicles)
with restricted movements are already being used in many
industrial fields. A common problem is the realization of
independent and autonomous movement strategies that do
not rely on physical changes in the environment. This paper
focuses a localization system environmentally independent.
One approach that has been taken recently is to use the
ceiling, which is usually immune to changes, as a reference
and implement landmarks like QR codes, sensors and other
reference points [1]. This might be complex and cost intensive.
Other solutions from the field of outdoor localization like
GPS (Global Positioning System) or AGPS (Assisted GPS) are
generally too imprecise for the robot to move to specific points
like a production line with the required level of precision.
Wi-Fi localization systems [2] still lack of precision. The
localization based on the local signature of the earth magnetic
field [3] seems limited in an industrial environment due to
motors and controllers magnetic noise. In addition, the factory
environment is usually noisy in terms of electromagnetic
interference.

Previous studies on indoor localization were made by J.
Leonard and H. Durrant-Whyte [4] using static geometric
beacons of known positions. Panzieri at al. [5] introduce
an image-based localization for mobile robots that detects
ceiling lamps. Rodrigues at al. made studies in warehouse
environments using visual odometry of ceiling images [6],
Markov Localization [7] and a 3D camera applied to a depth
map of the ceiling. Carreira et al. [8] also use depth maps
and introduce a technique to deal with missing data from the
3D camera. Both S. Kim & C. Park[9], C. Huang et al. [10]
and [11] present some interesting studies based on localization
with ceiling images.

The now classical approaches to deal with localization
problems are mainly EKF based or Particle Filter based [12].

EKF based approaches are unimodal and may have issues on
convergence and stability due to the linearization involved.
Particle Filter based approaches [12] are multi-model but their
performance is strongly related to the amount of particles and
re-sampling techniques used. The approach shown in [8] is
based on an LPV (Linear Parameter Varying) robot model that
avoids linearization, proving globally asymptotic dynamics.
However it is unimodal and requires a map of the environment.

The main contribution of this work is to present and
experimentally validate a Markov Localization based multi-
modal localization system. In addition the approach can be
used without previous knowledge about the map, if the beacon
positions are self-learned by the robot.

The rest of this paper is organized into five main sections.
After this introduction (section I) follows the general problem
statement (section II), where the details of the problem are
stated and the main techniques and tools are presented. Section
III presents a brief algorithmic proof of concept by applying
the previous techniques to a well-behaved simulation scenario
and comparing the results with the expected outcome. In
section IV, the real world experiments are introduced. Their
results are then discussed in section V. Finally, in section VI,
the conclusion and further improvements are outlined.

II. PROBLEM STATEMENT

Fig. 1. Ceiling with periodic patterns of lamps acting as landmarks.

The goal is to compute the pose of a mobile robot inside
an indoor environment using a camera and an IMU device.
The environment consists of a ceiling with a pattern of static
landmarks whose positions are known a priori (this assumption
will be released later). All landmarks are indistinguishable
against each other and might additionally be distributed along
the ceiling in a quasi-periodic pattern (Figure 1).
A camera is installed on the robot, which takes snapshots
of the ceiling. The robot pose relative to the landmark is
then calculated by the distance of the landmark to the center
of the image and its angle relatively to the direction of the
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robot motion. Additionally an IMU device is used to give the
absolute orientation of the robot inside the environment.
The Markov Localization (ML) algorithm is used to estimate
the belief grid of the robot position inside the environment.

Bel(xt) = Predict(xt′ , xt, ut) Correct(xt,mt) (1)

The ML estimation of the belief Bel(xt) over xt (vector of
all robot position coordinates (x, y) at time t) iterates over two
steps: prediction and correction (see equation 1). The initial
believe is a uniform distribution. xt′ denotes the previous
positions at time t′ and ut the movement vector of the mobile
used on prediction step. mt are sensor measurements from the
environment used on correction step.

Predict(xt′ , xt, ut) =

∫
P (xt|ut − xt′) Bel(xt′) dxt′ (2)

The prediction step (equation 2) uses ut (movement vector
derived of control actions done by the robot at time t). With
this information it shifts the previous belief xt′ (vector of all
robot position coordinates (x, y) at time t′) along vector ut.
The movement of the robot is derived from the orientation
measured by the IMU device and the speed of the robot.
The belief estimates are not changed by this operation. They
are merely redistributed to each position resulting of the
movement.

Correct(xt,mt) = η P (mt, xt) (3)

The correction step (equation 3) uses the measurements mt

(vector of robot sensor feedback at time t) from the sensors and
compares them to all values inside the environment. According
to the position, if the values are similar to the measurement,
the belief of the robot being at that position xt is increased.

III. PROOF OF CONCEPT

First the concept of ML was proved on an abstract ap-
proach. In this simplified program a single picture presents
the whole ceiling, while the measurement is a single pixel
representing the current position inside the ceiling. For the
movement, it was used a simulated trajectory with a given
speed and attitude for each step.
The measurement update is calculated with the expression in
equation 4, which determines the belief of each pixel being the
correct one. Measurements closer to the pixel value increase
the belief of the robot being at that position:

f(x, y) =
1

1 + |mesvalue− pixvalue| (4)

The convergence of this approach is shown in figure 2 and
shows the summation of all belief estimates over time. In the
background of the map (blue tones) the structure of the original
image can be recognized, since on the first step all pixels in the
measured tones are equally probable. Additionally the green
stripes indicate all the movements, which were still probable
after a few steps, because of the redundancy of pixel values in
some areas. Finally the yellow circular movement shows the
converged path. All other trajectories stopped, once the yellow
path was found.

After this successful convergence, robustness was tested,
adding randomized drifts in the movement data, and noise
on the measured gray value of the pixel. Although the con-
vergence was still given, high noises would introduce errors
on the converged path, which were then again corrected by

Fig. 2. Sum of probabilities during the convergence shows preliminary
estimates and the final covered path. Blue and black areas have lower belief
and green and yellow areas have higher belief.

convergence. Finally a kidnapping was added after a certain
time to test, whether the robot would localize itself a kidnap
to other position. In figure 3 we can see how the robot starts
at A with a converged estimation. At B the robot is then
kidnapped to position C. Right after kidnapping, the estimation
follows the direction of the true path in a wrong position. After
some measurements a new peak grows and after sufficient non-
matching measurements, the estimate flips to the correct peak
and follows the path flawlessly.

Fig. 3. Simulation of a kidnapping with ground truth positions in green
and estimated positions in red. (A) Start of trajectory after convergence. (B)
True path switches to a different position and orientation (C) after kidnapping.
Estimated positions continue to be computed from the point of kidnapping.
(D) End of trajectory with estimated position converging again.

This successful demonstration allows a transfer of the
approach to further experiments on real scenarios.

IV. EXPERIMENTS

The methods validated in the proof of concept (Section
III) were applied to a real indoor localisation system using
feature detection on the ceiling images. This section is split
into 4 parts. The first part describes the equipment used in the
experiments, including sensors, actuators and interfaces to the
software tools. The second part defines the environment of the
experiments with a special focus on the features that will be
detected on this ceiling. The third part of this section describes
the data preprocessing and the adaptions made in order to have
a clean testing set. The last part describes the program steps
and how the data is used in the software.

A. Equipment

Figure 4 presents the mobile robot that was used for the
experiments. The robot is controlled by a Laptop software
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interface (B) to the motion controller of the mobile platform
(A). The movement of the mobile robot can be controlled man-
ually using the computer keyboard or automatically following
a black line on the floor detected by a webcam placed in the
front of the platform.

Fig. 4. Mobile robot used on experiments. (A) Mobile platform. (B) Laptop
with software interface to controller. (C) Device with IMU sensors sending
data to application (D) Laptop with webcam to capture ceiling images

In addition to the control components, the robot carries
two types of sensors. The most important sensor is the camera
installed on top of the robot. This camera records images
of the ceiling as seen from the mobile robot during the
movement. The camera’s view was placed orthogonally to the
floor and was configured for its widest angle in order to get the
maximum field of view of the ceiling. Different cameras where
used in previous experiments but were disregarded in contrast
to better quality and wider field of view. The second sensor is
an IMU device, aligned with the direction of movement of the
mobile robot. During the experiment, it records the values of
the magnetometer in order to determine the orientation angle
of the robot. It then sends live data to the program, where it
is used to do the localization.

B. Environment

The experimental environment used for the tests is a labora-
tory. Figure 5 presents a part of the ceiling of the environment,
showing that this sort of ceiling offers several structures that
can be used as landmarks. Some peculiar structures like the
blue air conditioning, lamps, pipelines and electricity wires are
visible in this image. Round light bulbs have been chosen as
landmarks on these experiments because they are common in
an indoor environment and they are also the easiest feature
to detect from an image. Since the light bulbs can be turned
off or fail, these features are not always reliable. In our tests
it is assumed, that lights are working and always turned on.
Future work would have to show, whether the robustness
against kidnapping also extends to the failure of landmarks.
Another part of the experiments that is environment dependent
is the path that the robot will follow. Regarding the constraints
and obstacles inside the laboratory, two distinct trajectories
were chosen for the experiments (figure 6) in order to capture
different situations of feature detection. In both images the
trajectory is shown as a row of black crosses. The light bulbs
are marked with white crosses and surrounded by a color
code related to the distance to them. The top trajectory in
figure 6 is the shorter path, meeting only four visible light

Fig. 5. Ceiling Patterns. Different patterns can be used depending on the
ceiling.

Fig. 6. Two different paths used in experiment. Trajectory as black crosses
and landmarks as white crosses.

bulbs. To follow this trajectory, the robot tracks automatically
a predefined line on the floor that is used for Ground Truth
validation. The bottom trajectory in figure 6 has a much
wider range and meets seven visible landmarks. The manual
keyboard control was used to guide the robot on this trajectory.

As a precise ceiling configuration in not known, the ap-
proximate distance between landmarks was calculated using
the shadow each light casts over the vertical plates on the
floor and measuring the ground distance between them.

C. Data

The collected data consists of a sequence of image frames
from the video stream and orientation angles from the mag-
netometer of the IMU device. This data was processed, syn-
chronized and selected to adequately use it in the localization.
The synchronization and selection of the data is only necessary
during the test, because the localization process is run offline
in an infinite loop and both streams are not synchronised. As
the sample rate of the IMU data is higher than that from
the video stream, a magnetometer sample is assigned to each
image frame. To be able to seamlessly combine the data of two
consecutive loops, the data needs to be restrained to a common
start and end location. All these steps are irrelevant once the
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Fig. 7. Centroid of different lights. Coordinates of red marker give the
position of the centroid in pixels.

system is working online. Each frame of the video stream is
processed in order to retrieve the correct measurements of x, y
distances to the nearest landmark and to correct the orientation
of the robot. Three steps are needed to connect the image
with a point in the ceiling: create a digital map of the ceiling
with the distances to the nearest landmark for every possible
position in the map, then measure the distance in pixels from
the center of the image (supposedly the robot position) to the
nearest landmark for each frame, and finally to convert that
distance from pixels to meters.
The digital map is a matrix representing the environment
in a discrete manner combining each position inside that
environment to distance to the nearest landmark. An example
of the map values is presented as the color range in the
background of figure 6. The positions of the landmarks can
either be given or they can be learned by the robot. Since the
positions of the landmarks are given in decimeters, the map is
generated as a grid of values with one-decimeter resolution.
In order to calculate the distance to landmarks from an image,
a filter is needed to detect landmarks and their centers. Since
the light bulbs are landmarks with bright shapes, a binary
filter with high threshold value is enough for detection. Of
this binary shape the centroid is calculated. Figure 7 presents
some results of this approach over two images. As long as the
form of the landmark is symmetrical, the centroid should have
the same precision, independent on the size of version of the
feature.

The resulting data from these steps is used as the input to
the ML algorithm.

D. Software

The main steps of the process of localization can be seen
in Algorithm 1. Without using any kidnapping or learning
options, this program reflects the steps of a basic ML.

First, it reads data, then predicts the belief map for this step
by shifting the previous belief map according to the movement.
After that, a belief is calculated with the current measurement
using the x, y distance values to the nearest landmark in the
image. If there is no landmark in sight for the current position,
the distance value is set to the maximum possible distance
value. This penalty is used to reduce the belief of locations
where the landmarks are not visible.

Finally, the belief according to this measurement is added
to the overall belief and the loop begins again.

In addition to the basic approach, three features were
added in order to improve the convergence. The first feature
is the correction of the attitude given by the IMU sensor
with the orientation of features available in the current image
frame. Applying Hough transform over the current image and

while frame ∈ stream do
frame← stream
imu← process(IMUdata)
θ ← getangle(imu)
if feature was found in frame then
xy ← getcentroid(feature)
xy′ ← rotate(xy, θ)
learnedfeatures← (feature)
belief ← correct(map, xy′)
belief ← gaussfilter(belief)

else
belief ← correct(map,maxdist)

end if
prediction← shift(belief, speed, θ)
prediction← gaussfilter(prediction)
belief ← prediction ∗ belief
if simulatekidnappinge then

skip frames
end if
if learningfeaturese then

recalculate map with new features
end if

end while

Fig. 8. Structure of program

calculating the relative angle of the longest line, or the median
of all the lines, it gives a good indicator of the orientation
of the robot relative to the environment. This feature can be
used wherever the ceiling presents perpendicular structures.
Since this orientation is relative to each quadrant, it can be
combined with the quadrant from the current IMU angle. The
combination works according to the equation 5:

angle = �angle/(π/2)� ∗ π/2 + relativeAngle(img) (5)

The second feature is a smoothing filter applied over the
belief map whenever no landmark is detected for more than
50 samples. This filter increases the divergence in uncertain
areas and thus improves the convergence in case of kidnapping.
When kidnapping occurs, the robot is carried to a different
position without any record of its movement. It continues to
follow the correct trajectory, but in a different position. In order
to converge again it needs to change its belief according to the
unfitting measures it is getting. Since at that point it has a high
belief of its position in a wrong point, it takes a longer row of
landmarks to shift that certainty to the correct position. If the
belief is additionally decreased in every step without detection
of a landmark, it will recover faster to a new estimate.

The last feature is the independent learning of landmarks.
Since the estimation of the given landmarks position is not
precise, it was decided to let the robot learn the position
of the landmarks on his own. In order to do this, the robot
stores the position of all detected landmarks during a given
number of loops. Then, it clusters them in order to cancel
out duplicates caused by noise in the position and builds a
map of landmarks. The self-learning algorithm converges much
slower the first time, since one full loop it needed to gather the
landmarks. It then converges faster after a kidnap. The self-
learned map only contains the landmarks detected and none of
the invisible landmarks. This reduces symmetry and improves
the convergence. In practice, this method could be used to
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detect the landmarks in a first guided tour and later use them
as given landmarks for localization.

V. DISCUSSION OF RESULTS

Different visualizations were used during the experiments
to observe the convergence of the localization. The most
important were the accumulated belief map for a state of the
cycle and the summation for all belief maps, useful to show
the history of convergence. In figure 9 the convergence of the
belief map is shown. At the beginning of the localization (A)
the robot detected only one landmark. Since it cannot decide
which landmark it is, the algorithm increases the belief of all.
After half a loop (B) some landmarks start to be excluded
because they did not fit the movement. For example, the
landmark on the left was shifted out of the map. After one loop
(C) the lower beliefs are decreasing and the estimate appears
more focused. Finally after 1.5 loops (D) the localisation is
focused on a very small area of belief around the point of
convergence.

Fig. 9. Belief map of localisation; at (A) beginning; (B) after 0.5 a loops;
(C) after 1 loop; (D) after 1.5 loops. Using offline localisation with processed
IMU data.

The same behaviour can be observed in the sum of beliefs
(figure 10), which shows us the history of convergence. At first
(A) all landmarks moved along as the robot moves. In (B) only
two estimates remain but one is preferred. Since it did not fit
the measured landmarks, the assumed position converged to
a unique path. Afterward (C) and (D) this path was further
confirmed by all measurements and remains converged.

Fig. 10. Sum of belief maps of localisation; at (A) beginning; (B) after 0.5
a loops; (C) after 1 loop; (D) after 1.5 loops. Using offline localisation with
processed IMU data.

For the evaluation of the quality of this convergence both
paths shown in section IV were used and compared. The
circular one is called short loop for distinguishing, and the
squared, long loop. First we compare the map resulting for
the self learned landmarks with the given map. Here we will
see, that main differences are caused by the uncertainty of the

true motion and the visibility of landmarks during the path.
For visualizing the convergence, the transformation of the
ellipsoidal uncertainty is shown in the following section. Both
the short and the long loop are visualized after 2,3 and 4 loops.
In figures 12 and 13 the estimated path is shown in red, while
the true path is shown in black. The green ellipsoids represent
the area of all probabilities higher than 99.9% of the maximum
probability. Large ellipsoids show a higher uncertainty of the
chosen estimate.

A. Self learning

A configuration without self-learning and another with self-
learning were tested for each path. The self-learning is espe-
cially relevant in environments that are constantly changing.
Using only one loop for learning, the map is already fully
established. Multiple learning loops may help correcting the
position of landmark estimates, but may also increase the
uncertainty due to motion and measurement noise. In figure 11
both maps are shown for the same path. The missing landmarks
are those in the middle who are not visible for the robot. Also
the landmarks on the lowest row are shifted to the top because
of measurement errors. Those errors however don’t influence
the overall convergence, since they will be the same in the
next loop and thus match the landmark.

Fig. 11. Map of distances to landmarks with given true landmark position
(left) and learned position of landmarks (right)

B. Short loop

Figure 12 shows how the estimate improves after multiple
loops. The first loop was excluded, since it is still very cluttered
from first belief guesses. In the pictures we can see how the
uncertainty region marked as green ellipsoids decreases from
top to bottom. Additionally we can see, that some points are
still more uncertain, like the circle around the upper right
landmark. Here the size of the ellipsoid stays almost the
same and also the estimate still has some distance to the true
path. Another interesting point is the shape of the ellipsoids,
which indicates a small deviation orthogonal to the path, but
a larger deviation along the path. This could signify problems
with correcting the movement noise and good results with
correcting the measurement noise.

C. Long loop

A similar behavior is shown in figure 13 on the long
loop. The main difference is that the convergence is less
visible in the ellipsoids. Although the estimate still improves,
the uncertainty is already almost at its minimum in the first
image. Another difference is that the deviation is equally
distributed around its center. This has the reason, that the
estimate is already further converged, but it also shows, that
the dimensions are more equally covered with measurements
than in the short loop.
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Fig. 12. Estimated path (red), true path (black) and estimate uncertainty
(green) after 2, 3 and 4 loops on the short path.

Fig. 13. Estimated path (red), true path (black) and estimate uncertainty
(green) after 2, 3 and 4 loops on the long path.

VI. CONCLUSION

In this paper a visual localization system using ceiling
lights as landmarks is presented and experimentally validated
on an set of real conditions. Experiments were done with
two different trajectories and with different configurations
regarding the attitude read from IMU corrected with ceiling
angles and the learning of landmarks. The experiments showed
different configurations converging to the correct position. The
error of the converged state can be estimated by the size of the
uncertainty ellipsoids, which is 5-40 cm. Also a correction of
noisy IMU data with angles given by the ceiling images proved
to be very close to the true attitude of the robot. Depending
on the configuration, the convergence may take longer or be
more sensitive to kidnapping. The size of errors depends on
the granularity of the ceiling map, the precision of the centroid
detection and the noise on the ground-truth. Since this is a
specific set of data, other real datasets might prove a different
error range. In future work, this approach could to be tested

against other environments. Also the influence of missing or
broken landmarks could to be further investigated, since it
might show a different behavior than a kidnapping. All these
problems can be reduced with more precise measurements of
the camera and the ceiling map as well as by higher computer
performance, allowing finer granularity. They do not reflect on
the quality of the approaches used. Additionally the approach
was successfully used in an online application. Although it had
larger errors after the convergence, the problems are due to
irregular sampling steps. These final errors could be improved
by better sensors for the orientation and additional sensors for
the true speed and angular speed of the robot. At the same
time, the speed measurement would give more opportunities
to test the variance of the accuracy depending on the speed of
the robot.
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