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Abstract—This paper presents the experimental validation of
a new method for mobile robot global self-localization in unstruc-
tured environments, i.e. that does not need any beacons or other
artifacts structuring the environment. The method resorts to a
PCA-based positioning sensor, filtered in a Bayesian probabilistic
grid and combined with linear Kalman filters to estimate the
global pose of mobile robots. In the implemented system, the
information of the environment is captured only with onboard
sensors installed in a differential drive robot: encoders, compass,
and 2D depth sensor pointed to the ceiling. The use of PCA in a
Bayesian probabilistic grid allows to fuse the highly compressed
PCA database information, obtained with the low computational
effort, in an environment where repetitive scenarios can occur. To
avoid the negative impact in the localization estimate caused by
the corrupted data existing in the 2D depth sensor, an extension
to the classic PCA algorithm is suggested. Thus, the proposed
method allows the self-localization of mobile robots in indoor
environments with bounded accuracy and working in a wide
range of illumination conditions.

I. INTRODUCTION

The problem of localization has been a great challenge to
the scientific community in the area of mobile robotics; see
[11], [3] and the references therein. Typically, the localization
problem consists in the robot knowing what is its position in
a map, based on the knowledge that it can to obtain from
the environment, through sensors. However, since usually the
robot may capture similar observations about the environment
at different points of the map, the fusion of the sensors with
the robot motion model, through a Bayes filter, is common
in localization systems, allowing the global localization of the
robot [28], [10].

In [7] a Linear Parameter Varying (LPV) model of a
Dubins car kinematic model being used in a classical Kalman
filter (KF) has been developed and experimentally validated.
However, as KF (or EKF that is the current practice in mobile
robot localization) represents the estimate about the robot
position trough a Gaussian function, the probabilistic function
is unimodal and, therefore, it is unable to represent the belief
of being in different localizations at same time [10].

An alternative that allows the tracking of multiple possible
localizations is the implementation of a multimodal proba-
bilistic function to represent the probability about the robot
localization in the Bayesian filter, using a discretization of the
environment in a map. Several systems uses topological infor-
mation about landmarks with propose of reducing the number
of states and, hence, to obtain a more compact representation
of the environment [27], [23], [9].

The PCA was used in [22] for terrain reference navi-
gation of underwater vehicles. In [7], [8], it was used for
a self-localization system with a high compression ratio of
the environment and low computational efforts [16]. These
advantages are due the conversion of the map database into

an orthogonal space, allowing to obtain a new database with
a high compression ratio, when compared with the amount of
captured data. Moreover, the PCA allows to develop localiza-
tion systems that do not depend on any predefined structure
[17], [2], i.e, does not need to identify any specific features
about the environment.

The use of vision systems to obtain information about the
environment is common in robot localization due to the large
amount of information that can be extracted from the RGB
image [25], [24], [18], [13]. Although the common solution
in the development of the localization systems is to install
cameras to look around the mobile robot to obtain its position
[26], [13], [17], some robots use a single camera looking
upward [15], [12], [29]. The use of vision from the ceiling has
the advantage that images can be considered static and without
scaling. This solution of a ceiling vision is also successfully
implemented in [7], [6], which approach is related to the work
presented in this paper.

However, a general handicap of vision sensors is the low ro-
bustness working in different environment lighting conditions,
decreasing the robustness of the mobile robot localization sys-
tems. To avoid this problem, the use of time-to-flight sensors is
implemented in same localization systems [19], [1]. Moreover,
the time-of-flight has the advantage that allows the capture of
depth images with a grid of depth information from the field
of view. Recently, due to its low price and a straightforward
way to be connected with a computer, the Kinect - device
with a RGB and a depth camera developed to video games by
PrimeSense and Microsoft - becomes very popular in mobile
robotics community, creating some interesting mobile robots
applications [4], [14]. Kinect depth images are obtained by a
structured-light 3D scanner.

A common problem in depth sensors, including the Kinect
depth sensor, is the existence of missing data in signals,
caused by IR beams that are not well reflected, not returning
to the depth sensor receiver. In [20], [21], a method using
the Principal Component Analysis (PCA) methodology to
avoid the problem of missing data in signals is presented and
its performance is compared with other state-of-the-art algo-
rithms, concluding that PCA overperforms other algorithms for
recovery of corrupted signals. This method is experimentally
validated in self-localization system of mobile robots with
corrupted depth images captured by Kinect installed onboard,
pointing upwards to the ceiling [6].

In the present paper, an adaptation of the self-localization
method proposed in [6], considering a Bayesian filter in
the PCA position sensor is implemented in a grid map and
experimentally validated.

This paper is organized as follows: Section II presents the
mobile robot platform and the motivation for the use of Kinect
in the proposed localization system; in the Section III, the



proposed method that fuses the principal component analysis
algorithm for signals corrupted with missing data in a Bayesian
filter to obtain the mobile robot position is detailed. For the
method validation purpose, Section IV presents experimental
results of the proposed method; Finally, some conclusions and
topics about future work are presented in Section V.

II. MODEL PLATFORM

The experimental validation of the positioning system
proposed in this paper is performed resorting to a low cost
mobile robotic platform [5], with the configuration of a Dubins
car. A Microsoft Kinect is installed on the platform, pointing
upwards to the ceiling, and a digital compass, located on the
extension arm (robot rear part) to avoid the motors magnetic
interference (see Fig. 1).

Fig. 1. Mobile platform equipped with kinect sensor and compass

The Kinect includes a RGB camera with a VGA resolution
(640×480 pixels) using 8 bits and a 2D depth sensor (640×480
pixels) with 11 bits of resolution. Once the robot moves in an
environment indoors in buildings with some information (e.g.
building-related systems such as HVAC, electrical and security
systems, etc.), it is possible to use the signals captured by a
Kinect looking upward (RGB image, depth map or both) by
an algorithm that can provide mobile robot global position in
the environment.

Due to limitations found in image-based mobile robot
localization approaches, regarding illumination changes, and
aiming the development of an efficient self-localization solu-
tion that can work in places with variation on the level of
illumination, only the Kinect depth signal is used, resorting to
an adaptation to the method proposed in [22], [8], [7] to the
problem at hand.

III. PCA-BASED LOCALIZATION WITH A PROBABILISTIC
BAYESIAN GRID

PCA [16] is a methodology based on the Karhunen-Loève
(KL) transformation which is often used in applications that
need data compression, like image and voice processing, data
mining, exploratory data analysis and pattern recognition. The
data reduction is obtained through the use of a database
eigenspace approximation by the best fit eigenvectors. This
technique makes the PCA an algorithm that has a high com-
pression ratio and requires reduced computational resources.
The PCA algorithm is successfully used as the mobile robot’s
position sensor in [6], [8].

The PCA eigenspace is created based on a set of M
stochastic signals xi ∈ RN , i = 1, . . . ,M acquired by
a Kinect depth sensor installed onboard the mobile robot,
considering an area with N mosaics in two dimensional space,
N = NxNy , where Nx and Ny are the number of mosaics in
x and y axis, respectively.

In the common PCA-based approaches, the eigenspace
of the set of acquired data is characterized by the corre-
sponding mean mx = 1

M

∑M
i=1 xi and covariance Rxx =

1
M−1

∑M
i=1 (xi −mx)(xi −mx)T .

However, the existence of missing data in signal xi corrupts
the PCA mean value computation creating an orthogonal space
with erroneous data. To avoid the negative impact of the sensor
signals missing data in PCA-based approaches performance, an
extension to this methodology, shown in [6] is used which is
not detailed here.

Considering the mean ensemble and covariance of the
PCA database computed, the decomposition into the orthogo-
nal space follows the PCA algorithm classical approach, i.e.
v = UT (x−mx). The matrix U = [u1 u2 . . . uN ] should be
composed by the N orthogonal column vectors of the basis,
verifying the eigenvalue problem:

Rxxuj = λjuj , j = 1, ..., N, (1)

Assuming that the eigenvalues are ordered, i.e. λ1 ≥ λ2 ≥
. . . ≥ λN , the choice of the first n � N principal compo-
nents leads to stochastic signals approximation given by the
ratio on the covariances associated with the components, i.e.∑

n λn/
∑

N λN .

During the mission, the signal x is decomposed into the or-
thogonal space considering only the non-corrupted data. Thus,
before the projection of the depth image into the orthogonal
space, the mean substitution should be followed, i.e, all jth
component of the signal xi with corrupted data should be
replaced by the corresponding mean value mx(j). This method
removes the effect of the corrupted data in its decomposition
in the orthogonal space v = UT (x−mx).

The robot position is obtained by finding in all PCA
eigenspace, the mosaic i whose eigenvector vi is nearest to
the acquired signal v decomposed into the orthogonal space:

rPCA = min
i
‖v − vi‖2, i = 1, . . . , N ; (2)

Given the mosaic i that verifies this condition, its center
coordinates [xiyi]

T are selected as the robot position, obtained
by the PCA-based sensor.

However, when the robot moves inside a large area or in
scenery with periodic information, the information becomes
often ambiguous, resulting frequently in wrong values and
consequently, the robot can quickly lose its position. This
problem occurs because the use of the PCA for localization
as expressed by equation (2) resorts to an unimodal position
algorithm, which estimates the position based on the data
stored in the database with the eigenvector closest to the
acquired data at that instant. To solve this problem, a Markov
localization (ML) algorithm is applied, integrating the images
eigenvectors distance in a Bayesian probabilistic grid.

A. Bayesian position sensor with PCA-based probabilistic
observations

One common method to provide a global localization
in robotics is the ML algorithm, that is a straightforward
application of a Bayes filter, often used in robot navigation
[28], [10]. The ML provides the robot localization through a
probabilistic grid map of the environment, that represents the
belief of the robot about its position. This algorithm applies
the Markov assumption, where knowledge of the previous state
and current inputs is enough to predict the probability of the
current state. Thus, ML can estimate the states x in instant
k based only in instant k − 1. The Markov assumption make
ML a multi-modal algorithm allowing the track of multiple
possible positions, disambiguate the periodic information, and
find the right robot position.



During an experiment, when the robot is moving, the
probability about the robot states is continuously updated
with the robot motion prediction and consequent observation,
following the Markov algorithm in discrete instant k, where
x(k−1) is the state vector in the previous iteration, ua(k) the
controller action, z(k) the observation in the current iteration
and m the grip map of the environment (Fig. 2).

Markov localization (x(k − 1),ua(k),z(k),m)
for i = 1 to N do
P̄ (xi(k)) =

∑N
i=i p(xi(k)|ua(k),xi(k − 1))P (xi(k − 1))

P (xi(k)) = p(z(k)|xi(k),m)P̄ (xi(k))
return P (x(k))

Fig. 2. Markov localization algorithm

The correction of the prediction step is performed consider-
ing that the observation z(k) is given by the signal captured by
the Kinect sensor and processed by the missing data correction:

P (xi(k)) = p(z(k)|xi(k),m)P̄ (xi(k)), i = 1, . . . , N (3)

The belief (here referred more generally as a probability)
of the robot being in any position of the map is obtained by
the distance between the captured image and the corresponding
image into the PCA eigenspace:

p(z(k)|xi(k),m) = (1− η‖v − vi‖2), i = 1, . . . , N (4)

where η is a normalization factor, which ensures∑
p(z(k)|xi(k),m) = 1, v the eigenvector of the captured

image, vi the eigenvector of the i image into the eigenspace
and p(z(k)|xi(k),m) the probability to observe z(k) in the
state xi(k) considering the map m.

Finally, the robot position given by the PCA-based position
sensor with ML is obtained finding the mosaic that has the
maximum probability calculated in (3):

[x̂ ŷ]T = arg max
xi(k)

(P (xi(k))); (5)

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

To create the ceiling image database, a set of 1115 snap-
shots with depth images have been captured at pre-specified
grid locations, with the robot in the same attitude, along a
grid map with a distance of 0.3 m (in x and y axis) in an area
of 18.9 m × 9.6 m (Figs. 3–5). The captured depth images
are cropped with a circular mark allowing the rotation and
comparison of captured depth images when the robot is in the
same position, but with different attitude, during a mission.
In order to compress the amount of data, the depth images
are sampled with a compression ratio of 100 : 1 and converted
into a vector that will be added to PCA eigenspace. Therefore,
analyzing the corresponding PCA eigenvalues and selecting the
components that explain the images variability in an excess of
85 %, leads to an image database of 9 eigenvectors. This,
correspond to a reduction of 99.9 % in the memory resources
when compared with the capacity needed to store the captured
database, and 95 % when compared with the size after the
subsample. In [8], [7], the authors followed a similar approach
using a RGB camera, but the method revealed to be sensitive
to illumination conditions.

During an experiment, it is possible to estimate the robot’s
attitude and position, as well as the angular motion speed and
the robot’s angular slippage, using only the signals obtained by
the onboard sensors (Kinect, compass and encoders), through
a self-localization sensor based in two KF and one PCA
algorithm, with an architecture as detailed in Fig. 4.

Fig. 3. Grid map and depth image processing to create a PCA eigenspace
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Fig. 4. Architecture of the self-localization sensor

The following notation is used in Fig. 4: ua - controller
action; ψcompass - orientation angle given by the compass;
θrwencoder/θlwencoder - angle given by the encoder of the
right/left wheel; (x, y)PPCA - position coordinate given by the
probability grid; (x̂, ŷ)robot - estimated robot coordinates in the
world referential; ω̂robot - estimated angular speed; ω̂slippage
- estimated differential slippage.

Detailing the architecture of the self-localization sensor
presented in Fig. 4, the KF depicted on the left of the figure
implements the attitude optimal estimator model that is re-
sponsible to estimate the mobile robot attitude and the angular
slippage. Once all acquired depth images for the PCA database
are taken with the same orientation and compressed with a
circular crop (Fig. 3), during a mission, the acquired depth
images must be rotated to zero degrees of attitude, using the
compass angle, and compressed with the same circular crop.
The position estimator (on the right of the figure) implements
a Linear Parameter-Varying (LPV) model as a function of the
estimated angular speed in a KF, fusing it with the position
obtained by the PCA with Markov localization algorithm.

Resorting to this architecture, it is possible to estimate the
position, attitude and angular slippage of the mobile robot with
global stable error dynamics. For more details about this self-
localization architecture see technical report [8].

B. Bayesian Motion Prediction

The method detailed in Fig. 4 applies the ML algorithm
to compute the position of the robot in a probabilistic grid,
considering the position of the mosaics captured to create
the PCA database. Thus, the state vector of the Bayesian



Fig. 5. Ceiling view of the environment with periodic elements

filter is the position of obtained by the PCA with the ML
algorithm: xi = [xPPCA yPPCA]T . As presented in Section
III, the filtering step of the Bayesian filter is computed through
a probability grid based on the PCA algorithm applied to
the captured depth image. With the propose of computing
automatically the probability of the state transition in the
prediction step, and assuming that the robot moves in the
direction given by the attitude estimator, the following method
is applied.

Considering a grid with Nx and Ny mosaics in x and
y axis, respectively, the probability map with Nx × Ny is
created and initialized with the same probability in all states
P (x(0)) = 1

N , where N = Nx ×Ny .

During a mission, following the classical Markov localiza-
tion algorithm, the robot position probability map is updated in
a prediction step, considering the belief of the robot reaching
a new state xi(k) with the control ua(k). This probability is
obtained by the sum of all possible ways to the robot to reach
the mentioned state.

P̄ (xi(k)) =

N∑
i=1

p(xi(k)|ua(k),xi(k − 1))P (xi(k − 1)),

i = 1, . . . , N
(6)

Once that the states are stored in a grid, the probability map
computation in the prediction step is performed considering the
geometry of the grid and the speed and attitude of the robot,
as shown in Fig. 6.

Analyzing the probability state transition of Fig. 6 and
considering that the robot is moving with a speed u in a
direction with an attitude ψ, the images of eigenspace are
captured with a distance d between mosaics and the localizer
has been computed in a digital processor with a sampling time
T , being the probability states transition is given by:

P̄ (xi(k)) = η

9∑
l=1

plP (xl(k − 1)) (7)

where η is a normalizer, which ensures
∑
P̄ (xi(k)) = 1.

Thus, considering that the robot is moving in a direction ψ,
the possible way that is proposed in this paper to compute the

Fig. 6. Probabilities in prediction step

Fig. 7. Localization belief grid after 1 observation

state transition probability from each 8 neighbors (l = 1 . . . 8)
is:

pl =

{
(cos(ψ + tan−1 yl−y9

x9−xl
))q ifpl > 0

0 ifpl <= 0
(8)

pl = η · pl(1− p9) (9)

with η a normalization factor, which ensure
∑
pl = 1, and p9

is the probability that the robot is kept in the same state.

Once pi < 1, i = 1 . . . 8, the exponent q allows to increase
the probability between the states in the same direction of
the robot attitude, reducing the probability between the states
whose transition is caused by angular motion uncertainty
(diagonal direction in state transition).

Finally, the new predict states probability map xi(k) is
obtained:

P̄ (xi(k)) = η(
∑8

l=1 (pl
u·T
d P (xl(k − 1)))+

+p9(1− u·T
d ) · P (x9(k − 1)))

(10)

C. Results for 2D localization

To test the mobile robot self-localization performance of
the proposed approach, several tests have been performed in
an environment with repeatability along a predefined path with
93 m, combining both straight lines and curves and traveling



Fig. 8. Localization belief grid after 30 observations
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Fig. 9. Estimated position along time

two laps inside the mapped area. During the experiment, the
robot is moving with 0.1 m · s−1 robot speed and 2.5 Hz of
sampling frequency.

Figures 7–8 show the probability grid performed by ML
with a filtering step based on the PCA algorithm, where the
”hot colors” (dark red) represent high localization belief and
”cold colors” (blue) the low localization belief. The blue areas
in the center, bottom and top in Fig. 7 represent unmapped
areas which do not exist in the PCA eigenspace and, so, have
null probability.

Figure 8 shows that ML is able to quickly disambiguate
possible repeatability of the scenery and find the right position.
Figure 8 shows that after 30 samplings (12 seconds), the
position sensor has a high belief about the right position of
the robot, which can be validated with the results presented in
Fig. 9.

Figures 9 and 10 present the results of the self-localization
sensor, comparing the position obtained by the ML with PCA,
the KF position estimator and the real path of the robot,
measured in the ground. The results of Fig. 9 show that the
ML with PCA approach is able to achieve an accurate position
of the robot, allowing good performance on the global self-
position sensor. Notice that the grid with depth images has a
0.3 m accuracy whereas the position measured is far less than
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Fig. 11. Estimated attitude along time

1 meter close to the ground truth.

Figure 10 shows that the self-localization system estimates
the path correctly while the path estimated by odometry
diverges completely from the ground truth path. The blue
circles represents the position uncertainty obtained by the
Kalman filter. As it is possible to observe, the uncertainty
increases when the robot are in the top of the Fig 10. This
happen because in this area the celling has less information.
Nevertheless, Fig 9 and Fig 10 show that the robot is still able
to estimate the position of the robot, even when uncertainty
increases.

Analyzing the results of the attitude estimator in Fig. 11, it
is possible to observe that the estimated attitude is very close to
the ground truth, allowing to conclude that this Kalman filter
provides results with good accuracy. For more details about
Kalman filters design, see technical report [8].

Finally, analyzing the distribution of the estimated position
error in Fig. 12 can be concluded that it is approximately
Gaussian with a mean close to zero. The distribution is non-
zero mean Gaussian because the trajectory is not random
and due to the finite resolution of the PCA probabilistic grid
(0.3 m). However the mean error in both axis is very close to
zero being ēx = 5.6×10−2 m and ēy = −1.0×10−2 m, thus
giving an positive indication for the validation of the Gaussian
error assumption of the Kalman Filter design.
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V. CONCLUSIONS

The existence of scenarios with periodic elements or very
similar in different points of the environment is usual and it
can induce the position systems to a erroneous localization of
mobile robots. In this paper a Bayesian method using a grid
map with an observation belief based on PCA algorithm has
been developed and experimentally validated. The proposed
self-localization system is based on depth images of a Kinect
sensor installed onboard of a mobile robot, looking upwards
to the ceiling.

The integration of the Bayesian PCA-based position sensor
with a linear Kalman filter allows to obtain an suboptimal
and globally stable localization of the mobile robot. The sub-
optimality is due to the non linear PCA sensor. However the
results show that the localization error distribution is approx-
imate Gaussian thus validating the Kalman filter synthesis
assumption.

In the future, the proposed localization method will be
implemented in a path following control approach, where the
self-localization system will be integrated in a control close
loop performing different tasks like obstacle avoidance and
human-robot interaction.
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