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Universidade de Lisboa

1049-001 Lisboa, Portugal
p.oliveira@dem.ist.utl.pt

Abstract—The main goal of this paper is to present a visual
odometry system, for localization of mobile robot in indoor
unstructured environments, using only ceiling depth images,
captured by a Kinect sensor. The use of odometric sensors is
a common practice for localization of mobile robots. The method
proposed in this work exploits information from an independent
source of depth data and thus allows to complement or substitute
the use of classic odometric sensors, like wheels encoders, with
well known limitations. The experimental validation of the
proposed solution shows that the method is able to accurately
compute the attitude and linear velocities that allow a more
precise mobile robot localization, even in presence of corrupted
data from the sensor. Furthermore, the method works in an
extended range of lighting conditions, without the need to perform
any specific feature extraction.

I. INTRODUCTION

The localization of mobile robots to navigate in indoor
environments has been a great challenge to the scientific
community in the area of mobile robotics [8], [2]. GPS (Global
Position System) allows to obtain the global position and
attitude of a mobile robot with great precision. Actually GPS
became the standard solution for outdoor environments. How-
ever, for indoor environments, or any environment where the
GPS signal is not available, to solve the localization problem
the creation of alternative approaches is required to obtain the
global position of mobile robots [10], [6]. The use of Computer
Vision techniques is a common practice to obtain information
about the environment in robot localization, due to the large
amount of information that can be extracted from a RGB
image [15], [14], [7]. However, cameras are very sensitive
to the environment lighting conditions, which has a negative
impact in the robustness of localization systems. Recently, new
devices with a RGB and a depth camera developed initially
for video games, e.g Kinect from PrimeSense and Microsoft,
became very popular in the mobile robotics community[3],
[11]. Whatever the sensors implemented in the location system,
its main function is to look at the environment and rapidly help
the robot to answer two questions: where am I? and what am I
facing? The global localization of a mobile robot is obtained by
the fusion of the information about the environment, captured
by sensors, and the knowledge about the robot motion given
by the robot model. A Bayes filter is an appropriated technique
to fuse these information [15]. Usually, the prediction of the
robot motion is performed with the odometry of the wheels,
obtained by the encoders installed on the robot. Nevertheless,
due to different causes like uncertainty in robot dimensions,
misalignment of wheels or slippage in uneven terrain or other
adverse conditions, the wheel odometry rapidly degrades the
measure of the prediction motion, causing a negative impact
on the final results.

As an alternative to wheel odometry, some localization
systems have implemented cameras to predict the robot motion
based on computer vision techniques. This class of methods,
denominated visual odometry, allows the robot position de-
termination, velocity and acceleration based on examination

of the changes that motion induces on consecutive images
captured by the cameras [13]. In addition, visual odometry
can complement other sensors systems like GPS or inertial
measurement units (IMU) [1], [12]. The visual odometry has
been successfully applied in places where the GPS signal is
not available and will be the central focus of this paper.

Unlike most common localization systems that uses visual
odometry with RGB images captured by cameras pointed to
the ground [4] or looking around [1], the method presented in
this paper resorts to depth images captured by a Kinect sensor,
installed onboard of a mobile robot and pointed upwards to the
ceiling. The use of vision from the ceiling has the advantage
that images can be considered without scaling, i.e. a 2D image
problem results. The use of ceiling vision in mobile robot
navigation is successfully implemented in [9], [17], [6].

The method described in this paper aims to present a
visual odometry system that is experimentally validated in
a mobile robot, namely to extract the attitude and linear
displacement that is integrated in a localization system for
indoor navigation. Furthermore, the proposed method allows
the operation in unstructured environments, i.e. without the
need of any knowledge about the environment or the extraction
of specific features.

This paper is organized as follows: Section II presents the
mobile robot platform and the motivation for the use of visual
odometry, instead of wheel odometry; Section III presents
visual odometry in more detail; Section IV shows in detail the
experimental results that allow the assessment of the approach
for a number of high level tasks. Finally, Section V presents
some conclusions and unveils future work.

II. MOBILE ROBOT PLATFORM

The type of mobile robot used in this tests is a low
cost mobile robotic platform [5], with a differential drive
configuration. On top of the mobile robot there is a PC
laptop that controls the motors and a Microsoft Kinect pointing
upwards to the ceiling (see Fig. 1). On the right of the picture
an extension with a magnetometer can be seen, to provide
alternative attitude measurements, but not used in the scope of
this paper.

The Microsoft Kinect is a bundle of sensors, which includes
a RGB camera and a 11 bit resolution 2D depth sensor
(640×480 pixels). In the work reported in this paper, the robot
is moving in an indoor environment under a ceiling with some
information (e.g. building-related systems such as HVAC,
electrical and security systems, etc.). Tipical captured RGB
and depth images are shown in Fig. 2. For the development
of a localization method to work in places with illumination
changes and to reduce the computational efforts, the proposed
visual odometry localization system only uses the depth signal
of the Kinect sensor.



Fig. 1. Mobile platform equipped with Kinect sensor

Fig. 2. RGB (left) and Depth (right) images captured by Kinect sensor

III. VISUAL ODOMETRY SYSTEM

In robotics, visual odometry [13] is the process that predicts
the motion based on consecutive images captured by cameras
installed onboard of the robot. It has the advantage to be
more immune to wheel slippage than wheel odometry and
does not suffer from magnetic distortion effects observed in
magnetometers. The proposed method just requires a depth
camera pointing to the ceiling and uses the captured depth
information to compute the localization of the mobile robot,
without the need of a previous mapping and any feature
extraction. Thus, analyzing the general architecture of the
proposed system (Fig. 3), the method consists in the mobile
robot localization and the construction of the environment map
based on depth images captured from the ceiling. The first step
of the method is the definition of the new position in the map,
which is performed with the depth image and the knowledge
that the robot has about the environment and, in a second
step, the new depth image is added to the map, increasing the
database.

Looking to Fig. 4 that details the proposed visual odometry
localization method, the localization of the robot is performed
considering the computation of attitude and position of the
mobile robot. The attitude (rotation) is computed first and
the velocity (translation) is computed next. When the method
computes the rotation angle (attitude), the acquired image
which is not only rotated but also translated. The same thing
would happen when the acquired image is used to compute
velocity: new image is not only translated but also rotated.
Rotation and translation are not orthogonal in general but close
to orthogonal when the acquisition rate provides images with
significant overlap. Nevertheless, when computing velocity
(translation), the acquired image is rotated back with the
angle previously computed during the attitude step. Another
possibility would be the computation of both simultaneously,
minimizing two variables at same time instead one and then
the other. However this approach would involve much more
calculations to compute the minimum of the 3D surface,
instead of the minimum of two 2D curves.
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A. Attitude computation

Following the sequence of the algorithm, the value of
the mobile robot attitude is obtained comparing the captured
depth image with map testing possible turning angles of the
robot. Thus, considering a depth image dimage(k) captured
in instant k, a set of possible rotated images is created based
on the robot attitude in the previous instant of time for
ψj ∈ [ψ(k − 1)−∆ψ,ψ(k − 1) + ∆ψ], resulting in j rotated
images:

dimrj = imrotate(dimage(k), ψj), j = 1, ...,M (1)

where M is the number of images to be analyzed, to be
selected in the implementation phase.

Since the data is captured by a depth camera based on an
infrared grid, several waves are not well reflected, due to geom-
etry and properties of some objects, resulting in missing data
in the depth image, represented by null value (0 mm). Thus, to
eliminate the possible disturbances caused by the missing data,
the comparison between images is only calculated in pixels
with non corrupted data, i.e. for values in the map and in the
captured image with valid depth information.

The new robot attitude is computed, finding the angle ψj
that minimizes the mean square error between the image stored
in the map, in the previous position of the robot (mapx,y(k−
1)), and the rotation of the captured depth image (2)–(4),

mj = (mapx,y(k − 1)− dimrj)
2 (2)

m̄j =

∑N
i=1 mj

nd
(3)

where N is the number of mising data pixels.



Finally, the ψj of the rotated image (dimrj) corresponding
to the lowest mean square error (mj) is the robot attitude.

ψ(k) = min
j

(m̄j). (4)

B. Velocity computation

In a similar way, the velocity is computed by testing
different values and finding the one that results in the best fit.
Thus, considering a depth image dimage captured in instant
k and rotated by the obtained attitude previously mentioned
in Section III-A, results in dimt. A set of possible displaced
images along the direction of ψ(k) is created based on the
velocity of the robot in the previous instant inside the range
uj ∈ [u(k − 1) − ∆u, u(k − 1) + ∆u]. Following the same
process that lead to the attitude computation, the robot velocity
value is obtained by the mean square error of the possible
tested images (5)–(7).

muj = (mapx,y(k − 1)− dimtj)
2, (5)

where dimtj is the image translated with the possible velocity
uj .

m̄uj =

∑N
i=1 muj

nd
(6)

Finally, the velocity uj in the image translated (dimtj)
that corresponds to the lowest mean square error (muj) is the
robot velocity.

u(k) = min
j

(m̄uj). (7)

C. Position computation

After the computation of the attitude and the velocity of
the mobile robot based on the depth information, the robot
kinematics is used to allow the computation of the new
position, based on the well know Euler discretization of the
differential drive robot:

x(k) = x(k − 1) + u(k)T cos(ψ(k)) (8)
y(k) = y(k − 1) + u(k)T sin(ψ(k)) (9)

where T is the sampling time.

D. Mapping

Mapping is crucial in mobile robot navigation because
it improves the knowledge about the environment in future
localization. Therefore, in the fourth part of the proposed
method, the new captured depth image is added into the
global map of the environment in the localization computed
as described in Sections III-A, B and C. For experimental
assessment purposes, a naive approach to map building was
exploited in this phase of the work. Thus the addition of the
new captured depth image in the map is performed replacing
all null pixels existing in the global image by the pixels
captured by the Kinect sensor. In this process only the non
corrupted data of the captured depth image is considered.

IV. EXPERIMENTAL RESULTS

To test the proposed approach several tests have been
performed with different trajectories. In the experiences, the
robot starts at x0 = 0 m, y0 = 0 m, u0 = ẏ0 = 0.1 m · s−1,
ẋ0 = 0 m · s−1. During the motion, the mobile robot captures
depth images from the ceiling with 5 Hz of sampling rate. All
experiences are performed under a ceiling height of 5.2 m re-
sulting in a depth images with resolution 7.8×10−3 m/pixel.
The attitude and velocity computation (green filled circle in
Fig. 5) have been performed considering a range of ∆ψ = 7◦

and ∆u = 0.12 m·s−1. In this process, the attitude step is 0.1◦

for |ψj−ψ(k−1)| <= 0.5◦ and 2◦ for |ψj−ψ(k−1)| > 0.5◦.
The velocity step is 0.04 m · s−1 in all range (see red circles
in Fig. 5).

A. Results for a lawnmower trajectory

The first experience uses the classical lawnmower trajec-
tory, which combines lines with curves, alternating the turning
direction of the mobile robot and starting in with initial attitude
of ψ0 = 90 ◦. As it is possible to see in Fig. 6, the proposed
method allows to estimate the attitude of the robot, presenting
results relatively close to the measured ground truth attitude.
Looking to Fig. 6, it is possible to observe that the results
provided by the proposed method are indeed better than the
usual wheel odometry.

Fig. 7 shows that the visual odometry error is never
higher than 12◦ and averages an error of 3◦ during the whole
trajectory. On the other hand, the wheel odometry average an
error of 8◦, reaching a maximum of 24◦. Comparing the time
of these occurrences with the attitude presented in Fig. 6, it
is possible to concluded that visual odometry provides better
results when the robot moves in a straight line, decreasing the
accuracy along the curve trajectories. The same effect happens
with wheel odometry. However, the results of Fig. 6 show that
visual odometry is able to recover the accuracy after finishing
the curve, while wheel odometry is unable to do it, increasing
the attitude error along time.

Moreover, observing Fig. 8 that shows the histogram of
the attitude error of both odometry methods, it is also pos-
sible to conclude that visual odometry provides better results
than wheel odometry. In this experience the visual odometry
histogram is closer to a zero mean Gaussian distribution than
the wheel odometry which presents a distribution with 13◦ of
mean. The large value of the mean error, considering wheel
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Fig. 5. Attitude and velocity computation in the instant t = 2 s
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Fig. 6. Attitude of the robot along time

Fig. 7. Results for visual and wheel odometry errors along time

odometry, denotes the existence of angular slippage in the
motion. Notice that, in this experience, when the robot is
navigating and mapping with a large image overlapping, visual
odometry can compute an attitude value closer of the real one,
eliminating the offset caused by angular slippage.

Figure 9 shows the position estimated for both odometry
methods compared to the ground truth trajectory. The starting
point is the same (0,0) and it is possible to remark that near
the finish points the visual odometry is much closer to the
ground truth trajectory than the wheel odometry. Moreover,
Fig. 9 shows that the position obtained by wheel odometry, due
the wrong results of the attitude presented in Fig. 6, rapidly
diverges from the ground truth trajectory, causing the robot to
lose its own localization.

In addition to the estimation of the attitude, the proposed
algorithm also computes the velocity of the robot. Although,
due to the resolution of this estimator, imposed by the image
translation in the grid, the results have lower accuracy than
the odometer wheel (Fig. 10). The fact that the estimator
provide results with approximately Gaussian error (Fig. 11),
do not disturb the global robot position estimation. This can
be verify by the results shown in Fig. 9, where the global
position obtained by visual odometry are much more accurate
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than those obtained by the odometry wheel.

Finally, Fig. 12 shows the ceiling map computed along
the trajectory. Comparing the depth image of Fig. 2, which
shows the first data of this experience, it is possible to observe,
that the knowledge about the environment is larger and well
organized. Comparing the amount of missing data (blue color)
present in map, after the first depth image acquisition (Fig. 2),
is higher than the existed in the final map (Fig. 12). Notice that
the blue area around the final map correspond to a non mapped
area and not to missing data. This allows to concluded that the
mapping method is able to build a ceiling map, reducing the
amount of missing data existing in depth images.

B. Results for a longer trajectory

To test the robustness of visual odometry when the robot
is moving in a longer straight line, a new experience has been
performed. Thus, the robot has been moving along 32 m,
capturing the depth ceiling images for its self-localization
database and create the environment map (Fig. 13).
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Fig. 11. Attitude of the robot along time

Analyzing the results presented in Fig. 14, it is possible to
see that the attitude computed by the proposed visual odometry
method provides results closer to the ground truth attitude than
the computed by wheel odometry. This effect is more visible
along time, what denotes that visual odometry presents a
more robust method for attitude computation based on motion
analyzing.

Examining the distribution of the attitude error in both
odometry methods as depicted in Fig. 15, it is possible to
observe that visual odometry is more accurate than wheel
odometry, with an approximate zero mean Gaussian and low
standard deviation (σ2 = 5◦2). On other hand, the distribution
of wheel odometry attitude errors shows a larger distribution
with different peaks and high values to attitude errors.

Comparing the results of the odometry localization ob-
tained by wheel odometry with the visual odometry proposed
in this paper (Fig. 16), it is possible to conclude that the
proposed visual odometry provides a better localization than
wheel odometry. However, results shows that, although this
method can predict the mobile robot motion with more ac-
curacy than wheel odometry, visual odometry does not have
enough precision when the robot is navigating during a long
time in unmapped places.

Notice that, in this experience the robot is moving along
32 m, navigating 320 s (5 minutes and 20 seconds) with
only one sensor in an unknown environment. This allows to

Fig. 12. Ceiling map built along the trajectory

conclude that, to develop localization systems able to navigate
in an unknown environment, the proposed visual odometry
method must be fused with other sensors. However, these
results shows that the use of visual odometry can provide
better motion prediction than wheel odometry. Moreover, this
result is achieved without any previous knowledge about the
environment.

V. CONCLUSION

In this paper a visual odometry localization system for
mobile robots navigation in indoors unstructured environments
is presented and experimentally validated. The localization
system resorts only in depth images of the ceiling, captured
by a Kinect sensor. Several experiments were carried out and
the real trajectory of the robot was measured to performed a
ground truth test of the localization system. Results show that
visual odometry presents better results than wheel odometry,
calculating the robot attitude and velocity closer to the ground
truth. The attitude error obtained by wheel odometry increases
significantly over time, causing the robot to degrade its own
localization information, unlike visual odometry, which can
get a better localization on the first trajectory and a reasonable
localization in the second longer trajectory. Hence, as visual
odometry computes the attitude with more accuracy than
wheels odometry, the incremental errors along time are less
significant. In the future, the visual odometry localization

Fig. 13. Built map along a trajectory with few image overlapping
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Fig. 15. Histogram of the attitude error

system will be integrated in a self-localization system, comple-
menting the existing odometry data (compass, magnetometers,
encoders, ...), improving the accuracy of the overall system.
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