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Abstract— This paper proposes and experimentally validates
a landmark-based absolute mobile robot localization system,
composed by two filters, one for attitude estimation and the
other for position estimation. The estimation is carried out
in the body-frame allowing for the model kinematics to be
LPV (Linear Parameter Varying), thus using no approximate
linearisation. The resultant estimators respect GAS (globally
asymptotically stable) error dynamics, are parametrized by
odometry data and corrected by landmark position and attitude
measurements provided by an on-board RGB-D (red, green,
blue and depth) sensor. Experiments were carried out, making
use of a wheeled mobile robot and a Qualysis Motion Tracking
System for ground-truth validation. Attitude and position as
well as linear and angular slippages, both proven observable,
are estimated, resulting in an effective real-time localization
system without requiring the landmark to be always visible.
Error convergence is achieved regardless of the initial estimate
of both position and attitude, validating the system global
stability.

I. INTRODUCTION

The problem of localization of mobile robots is one
important challenge to the scientific community. The robots
have to be able to use the sensors on-board, which often
consist of optical encoders, mono and stereo cameras, gyro-
scopes, accelerometers, laser range-finders as well as others
[1], in order to localize themselves in the environment, thus
knowing its position in some global frame or in any local
frame of interest. This localization is always needed if the
robot is to autonomously plan its motions that go towards
the satisfaction of a certain goal. The particular task of
mobile robot is the main driver in the choice of the kind
of localization needed, ranging from a topological kind of
localization [2][3], often aided by a structured map or other
representation of the environment, to a scenario where the
robot may have to build its own map of the surroundings
while simultaneously localizing itself in it, solution that is
widely known as SLAM [4][5]. The latter are usually based
in particle filters or extended Kalman Filters. The proposed
strategy consists of a sensor-based localization system that
yields the position of a certain feature or landmark in the
robot frame with the use of a RGB-D (red, green, blue and
depth) camera, thus allowing for an intuitive interaction of
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Fig. 1: Estimator Modules

the robot with its close surroundings. The purpose of this
method is: i) to tackle some problems present in a number
of localizers by reducing the consistency and accuracy issues
caused by approximate linearisation, as is the case in any
EKF based localization system, namely EKF-SLAM [6][7],
and ii) to complement their functionality, allowing for a
modularized approach to a specific mission. This estimator
takes advantage of the independence between the attitude and
position of a feature relative to the body-fixed frame, thus
preventing the attitude errors from augmenting the position
estimation error. The system kinematics are LPV (Linear
Parameter Varying), thus allowing for GAS error dynamics
in the estimators since the kinematics are not linearised for
the estimation process. Angular and linear slow time varying
slippages are also shown to be observable when used to
augment the state, as in [8][9]. The most obvious uses for
the work here described are the design of automated docking
systems and possibly the application of the linear estimator
apparatus to body-based SLAM algorithms, hopefully mit-
igating consistency issues usually present in linearised sys-
tems. This work is structured as follows: the architecture is
presented in Section II, where all the modules that compose
the localization system are presented, followed by the robot
environment formalization in Section III. Then, both attitude
and position estimator modules are presented, respectively,
in Section IV and Section V. Finally the experimental results
are presented and analysed in Section VI, where the ground-
truth used consists of data acquired from a Qualisys

TM
Visual

Tracking System [10].

II. ARCHITECTURE

The proposed landmark-based on-board localization sys-
tem, depicted in Fig. 1, is composed of three modules: i) the
landmark detector module that consists of the algorithm that
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will process the RGB and depth images in order to obtain
measurements of the landmark position and orientation in
the robot frame; ii) a sub-optimal position estimator based
on a Kalman Filter; iii) an optimal attitude estimator, also
based on Kalman Filter. These modules rely, as stated before,
on the sensor package composed by a RGB-D camera, that
will provide the landmark detector with the images, and
both optical encoders attached to the wheels that provide
angular and linear velocity readings. The velocity readings
are, however, not derived from the encoder readings directly,
but from the commands stored in the controller. The attitude
and position estimation solutions are described in Section IV
and Section V, respectively.

III. MODEL DESCRIPTION

The mobile robot scenario of operation under study in
this work is depicted in Fig. 2, where the frame {I} is
fixed to Earth, which is considered to be stationary for the
purposes of this study, thus making it an inertial frame.
Frame {B} can be defined as being attached to the vehicle
and is hence designated by body-fixed frame. Both frames
{I} and {B} are defined, respectively, by the orthonormal
basis {I iI , IjI} ∈ R2 and {I iB , IjB} ∈ R2.

{I}
{B}

npBl

pIB

pIl

Fig. 2: Schematic of Inertial and Body-Fixed frames

In order to transform a position written in {B} into one
written in {I}, a transformation needs to be executed. The
translation is defined by the body-fixed frame position in
the inertial frame pIB , and so the landmark position in both
frames follows

pIB(t) + IpBl (t) = pIl (t), (1)
where IpBl (t) ∈ R2 is the landmark position in {B}
expressed in {I} and pIl (t) is the landmark position in {I},
expressed in the latter. The landmark position in the body
fixed frame pBl (t) ∈ R2 is what needs to be derived and
will henceforth, for a matter of simplicity, be denoted as
e(t).

The rotation matrix from {B} to {I} that simplifies (1) is
denoted by IRB(t) ∈ SO(2) and respects the kinematics

IṘB(t) = S(ω)R(t), (2)
where

S(ω) =

[
0 −ω
ω 0

]
,

and ω ∈ R is the angular velocity of the body-fixed frame.
The rotation IRB(t) will henceforth be denoted as R(t) for
a matter of simplicity. It is straightforward to show that the
inverse rotation follows a similar expression to (2) by taking

the derivative on both sides of RTR = I and making the
necessary substitutions

ṘT (t) = −S(ω)RT (t). (3)

IV. OPTIMAL ATTITUDE AND ANGULAR SLIPPAGE
ESTIMATION

This section will focus on deriving the attitude estimator.
Firstly the kinematic model will be described, giving then
place for a brief observability analysis and then defining the
estimator. The proposed kinematic system estimates expli-
citly the unavoidable angular slippage that may occur due to
the lack of knowledge of the contact points with the floor as
well as the lack of precision in the measurement of each
wheel radius or asymmetries in mechanical construction.
Here the angular slippage s(t) is considered to be slow time-
varying or even constant (ṡ = 0). The model that describes
the attitude system is given by the kinematics and the output
equations

θ̇(t) = Aθθ(t) + Bθω(t) + ν(t), (4)
and

y(t) = Cθθ(t) + η(t), (5)
respectively, where

θ(t) =

[
ψ(t)
s(t)

]
,

Aθ =

[
0 −1
0 0

]
,

Bθ =

[
−1
0

]
,

Cθ = [ 1 0 ] .

and ν(t) and η(t) are the plant noise and output noise,
respectively, both assumed to respect an unbounded normal
distribution, i.e,

ν(t) ∼ N(0,Qθ)

η(t) ∼ N(0,Rθ).

This model addresses the landmark as if it is moving in the
body reference system and so ψ(t) represents the landmark
attitude in it, which as stated before, is under the assumption
that it is possible to define a unique reference system in
the said landmark, and that the camera is able to detect its
orientation. Assuming a constant angular velocity between
two sampling instants, the state transition equation for this
linear time invariant system is

θ(k + 1) = Φθ(T )θk + Gθ
kωk + νk, (6)

in which ωk is the measured angular velocity obtained
using the command sent to the dual-motor driver, Φθ(T ) =

exp(AθTk), Gθ
k = ωk

∫ Tk

0
Φθ(Tk − τ)

(
Bθ)

)
dτ and Tk is

the time between samples k and k+ 1, a measured quantity,
rather than a constant sampling period.

Since the continuous system is LTI, (7) is sufficient to
verify the observability of the system

Oa =

[
C

CA

]
=

[
1 0
0 −1

]
. (7)

The attitude kinematics and output system are completely
defined and so it is now possible to define the dynamics
of the state vector estimate, making use of the celebrated
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Kalman filter,

θ̂k = Φθ(T )θ̂k−1 + Gθ(T )ωk + Kθ
k

[
ψ̄k − ψ̂k

]
, (8)

where Kθ
k is the dynamically computed Kalman gain in time

kT by using (9), (10) and (11) for each prediction or update
iteration.

Kθ
k = Pθ

kC
θT
[
CθPθ

kC
θT
]−1

, (9)
Pθ
k|k−1 = Φθ

kP
θ
k−1|k−1Φ

θT
k + Qθ

k , (10)
Pθ
k|k = (I−Kθ

kC
θ
k)Pθ

k|k−1(I−Kθ
kC

θT
k ) + Kθ

kR
θ
kK

θT
k .
(11)

V. SUB-OPTIMAL POSITION AND LINEAR SLIPPAGE
ESTIMATION

In order to have a localization system working in {B},
as stated above, we need to be able to express ė(t) for the
position of the landmark kinematic derivation. After having
completely defined the model of the robot environment in
Section III, we start by expressing the robot’s position in
{I} kinematics in (12)

ṗ(t) = IRB(t)u(t), (12)
where u(t) = [v(t) 0] and v(t) ∈ R is the robot velocity
in the body-fixed frame. By expressing the product of (1)
by RT we get the position e(t) expressed in order of pl
and p each corresponding to the landmark position and {B}
position in {I} (respectively pIl and pIB).

e(t) = R(t)T (pl(t)− p(t)), (13)
which, once the time derivative is taken gives

ė = ṘT (t)(pl(t)− p(t)) + RT (t) (ṗl(t)− ṗ(t)) . (14)
Considering that the landmark will be static in the inertial
reference system, the term where ṗl(t) will be dropped, and
by using (13) and (12) in (14) we get

ė = −S(ω)RT (t)(pl(t)− p(t))−RT (t)ṗ(t), (15)
and if we further use the substitutions of (13) and (12) we
will get the simplified equation in (16)

ė(t) = −S(ω)e(t)− u(t). (16)
It can be further assumed that the common mode velocity
v(t) can suffer from a biased measurement due to slippage.
The velocity could then be expressed as v(t) = v̄(t) + b
where b is the constant or slow varying bias and v̄(t) is
the measured linear velocity, while v(t) is the true linear
velocity. Thus, the slippage is only considered along the
longitudinal axis of the robot. An extension to consider
tranversal slippage would be straightforward. If the state
vector is x(t) = [eT (t) b(t)]T then the matrix expression
for the kinematics of the position will be given by (17)
ẋ(t) =A(ω(t))x(t) + Bv̄(t) + v(t)

=

[
0 ω −1
−ω 0 0
0 0 0

]
x(t) +

[ −1
0
0

]
v̄(t) + v(t),

(17)

where v(t) ∈ R3 is the white plant noise caused by the
model uncertainty and follows the following properties

E[v(t)] = 0, ∀t ∈ R (18)

E[v(t)vT (τ)] = Qδ(t− τ). (19)
The output equation of the system can be expressed by (20)
since the camera sensor gives the landmark localization in

{B}
y(t) = e(t) + w(t), (20)

where w(t) represents the noise generated by the camera
sensor as well as the detection algorithm and has similar
properties to those of the plant noise

E[w(t)] = 0, ∀t ∈ R (21)

E[w(t)wT (τ)] = Rδ(t− τ), ∀t, τ ∈ R. (22)
Also, both the plant and the sensor noise are uncorrelated,
which can be expressed as

E[w(η)v(τ)] = 0, ∀η, τ ∈ R. (23)
By taking an identical approach to the one in Section IV,
the LPV discrete system is defined as

xk = Φ(ωk)xk−1 + Gkvk−1 + vk, (24)
where the transition matrix Φk is expressed by (25)

Φk = exp

(∫ Tk

0

A(τ)dτ

)

=




c(ωkTk) s(ωkTk) − s(ωkTk)
ωk

−s(ωkTk) c(ωkTk) 1−c(ωkTk)
ωk

0 0 1


 , (25)

vk is the discrete white noise and Gk is the discrete input
matrix expressed in (26)

Gk =

∫ tk

tk−1

Φ(τ, tk−1)Bdτ =



− sinωk−1T

ωk−1
1−cosωk−1T

ωk−1

0


 . (26)

In order for the entire state vector x be estimated, the
system needs to be observable, since the observation matrix
C does not give information about the slippage directly. In
the position model case, since the kinematics are LTV, this is
assured if and only if the observability gramian WO(t1, t0)
defined by (27) is non-singular. It takes the form

WO(t1, t0) =

∫ t1

t0

ΦT (τ, t0)CTCΦ(τ, t0)dτ

=

∫ t1

t0

[
1 0 a
0 1 b
a b c

]
dτ, (27)

where

a = − (τ − t0) sin (θ − θ0)

θ − θ0
,

b =
(τ − t0)(cos (θ − θ0)− 1)

θ − θ0
,

c = 2

(
τ − t0
θ − θ0

)2

(1− cos (θ − θ0)).

The integral does not change the matrix rank and so
rank(WO) = 3 which is the same as the number of
states present in the state vector, thus rendering this system
observable. Even if the linear movement case is considered,
i.e. ω = 0, it results that

WO(t1, t0)|ω=0 =

[
∆t 0 −∆t
0 ∆t 0
−∆t 0 −∆t2

]

and full observability is preserved.
The position estimator will perform a sub-optimal estim-

ation since the angular velocity that parametrizes the state
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transition matrix of this system is meant to take into account
the angular slippage whose estimation is described in Section
IV. Nevertheless, the equation that describes the estimate
dynamics is similar to the one used for the attitude system
estimate and is expressed by (28)

x̂k = Φx(ω̂k, T )x̂k−1 + Bxvk + Kx
k [ēk − êk] . (28)

The Kalman gain for this estimator is calculated in the exact
same way as in the attitude estimator, using (9), only using
the appropriate sensor noise covariance matrix Rx, Cx, Px

and Qx.

VI. EXPERIMENTAL RESULTS

(A) (B)

(C)

Fig. 3: Biomechanics Laboratory of Lisbon (Landmark (A), Robot
prototype (B), Kinect Camera (C)).

Given the estimators proposed in this work, they must
be validated with experimental results. The focus of this
section is the description of the experimental setup and the
analysis of the estimation errors. The ground-truth validation
data acquisition system used consists of a Qualisys

TM
Motion

Tracking [10] system that uses 14 different cameras to track
the position of reflectors placed upon the mobile robot. The
characteristics of the tracking system are listed in Table I.

Cameras 14 Qualisys Pro Reflex 1000
Frequency 100 Hz
Markers 19 mm diam. passive retroreflectors
Precision <1mm after calibration

TABLE I: Qualysis Motion Tracking system characteristics.

The robot prototype and landmark setup are shown in Fig.
3. Several passive retroreflectors, which are highlighted by
the camera flash, were placed on the robot and landmark to
provide redundant þdata. The shown landmark serves only a
purpose of validation of the theoretical localisation method.
Below is a summary of the parameters and initialization of
both Kalman Filters.
• Camera noise covariance: Rx = 1× 10−2I2 and Rθ =

1× 10−2

• Plant noise covariance: Qx = diag(4.1 × 10−6I2, 1 ×
10−8) and Qθ = diag(2× 10−5, 1× 10−8)

• Initial covariance matrix: Px
0 = 1I3 and Pθ

0 = 0.1I3
• Initial conditions: ê and θ̂ were set to the real initial

position, and both bias estimates b̂ and ŝ were set to
zero.

It is also important to bear in mind the position of the camera
frame {C} relative to the body-fixed frame {B}, defined by
a translation and a rotation particularized below

pBC = [0.090 0.03 0.775]
T

(m),

BRC =

[
c(θ) −s(θ) 0
s(θ) c(θ) 0

0 0 1

]
,

where θ = 0.216 rad.

A. Experimental Validation
This section comprises the localization results for two

separate trajectories performed in a laboratory equipped
with with a Qualisys motion tracking system. For an easier
visualization, only a portion of the first trajectory tested
is depicted in Fig. 4, where Estimate refers to a correct
initialization and Estimate 2 to a wrong one, for global
stability validation. The comparison between ground truth
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0

0.5

1
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)

 

 

Observations
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End

Start

Fig. 4: Ground Truth and Estimate.

data expressed in {B} and the estimate is depicted in Figures
5 to 7. In these results neither of the slippages were being
estimated, so the open-loop is carried-out with odometry data
alone. The landmark is not always visible from the robot.
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Fig. 5: Estimate and Ground Truth in X axis.

The maximum difference between the estimated trajectory
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Fig. 6: Estimate and Ground Truth in Y axis.
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Fig. 7: Attitude estimate error, relative to ground-truth information.

occurs after an unavailability of landmarks during a period of
30 seconds and also due to sensor faulty measurements at the
end of the experiment. A statistical representation of these
differences can be seen in Fig. 8. When the same trajectory
data is processed while also estimating the slippages, some
improvement can be noticed, especially in the portion of
the trajectory where both angular and linear velocities are
maintained. The mentioned data set goes from 20 seconds
to 50 seconds from the beginning of the experiment and
the slippage estimation effect can be seen when comparing
between Figures 5 to 7 with Figures 9 to 11.

Since the robot kept both velocities nearly constant, the
slippage estimation that took place until the 20 second
mark was suitable until the 50 second mark, allowing for a
reduced open-loop estimation error. The slippage estimations
are depicted in Figures 12 and 13, where the shaded areas
correspond to the time periods of landmark unavailability.
With the same data, a different test was conducted, this time
forcing b = −0.01 (m/s). The slippage estimate behaviour
is depicted in Fig. 14.

VII. CONCLUSIONS

A sensor-based positioning system based on measurements
from optical encoders and from feature recognition using an
RGB-D camera is proposed and experimentally validated.
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Fig. 8: Statistical study of estimation error relative to ground-truth.
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Fig. 9: Estimate and Ground Truth in X axis.

The proposed estimation system is able to localize a certain
feature in the environment, tracking it even if it is not in
sight, by estimating any slippage that might be occurring in
the wheels for a better open-loop navigation. The Kalman
filtering solution makes use of a new linear differential drive
mobile robot kinematics by representing the movement of
the environment in the robot frame instead of the inverse,
allowing for GAS error dynamics as the system kinematics
is linear, as opposed to linearised. The estimate is seen to
converge rapidly once a landmark is in sight and also to be
globally stable in faulty initializations or robot kidnapping
scenarios. The slippage estimation contributes positively for
the localization in open-loop if the robot does not change
its speed too much after the slippage estimate settles. The
slippage takes some time to be estimated due to the choice
of values for Q and R, which were chosen so as to
smooth the estimate and also avoid the slippage estimate
to respond to noise or faulty measurements. This work is
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Fig. 10: Estimate and Ground Truth in Y axis.
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Fig. 11: Attitude Estimate error, relative to ground-truth informa-
tion.

meant to be applied in a modularized approach, however a
global localization can be devised by simply using several
landmarks and allowing for a parallel filtering of several
Kalman units, one for each landmark of interest, where a
global estimator would not be able to navigate open-loop for
long periods.
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Fig. 12: Angular slippage estimation.

Fig. 13: Linear slippage estimation.

Fig. 14: Linear slippage estimation.
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