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Abstract
Control of vehicle formations is an area of great in-

terest that requires knowhow from several scientific areas
such as control theory, vision, communication system, etc.
In this work, several approaches to maintain a formation
of vehicles are explained and tested.

In this paper, the approach towards formation con-
trol is achieved through Position Based Visual Servoing
(PBVS). In PBVS, a cartesian space controller is used for
target tracking. Two 2D pose estimation methods are de-
scribed and two local controllers developed (Discrete Lin-
ear Quadratic Regulator and an explicit Model Predictive
Controller).

To maintain the mobile robots in formation, a Neighbor
Referenced (NR) control scheme is used. NR-based con-
trol allows decentralized formation control schemes since
each member of the formation only has information of its
neighbors and not of the entire robots in the formation.

Finally, simulation and experimental results of the de-
veloped work are presented.

1. Introduction
Mobile robotics has been achieving newer and higher

levels of importance in recent years and with it, new, com-
plex applications in which mobile robots may aid human
beings have been imagined. These new challenging ap-
plications demand more complex control strategies, ad-
vanced sensors and actuators, more computational power
and, in some situations, advanced cooperation and com-
munication schemes between mobile robots.

One of the most renown challenges regarding mobile
robots is to make these work in a cooperative fashion with
the objective of maintaining the robots in a predetermined
formation. The importance of formations is quite visible
in nature. For millions of years nature has favored animals
that work in groups and collaborate between themselves.
An example of this are geese who fly in V shaped forma-
tions1 to decrease the effects of air resistance, allowing the
members of this specie to save energy while flying.

Human beings also have to gain from formations. By
controlling various robots in order to maintain a forma-
tion is of vital importance in Automated Highway Sys-

1V shaped formations are commonly referred to as wedge formations

tems (AHS) [14], satellite clustering systems [15], coop-
erative flight control [8], [1] and others. Cooperative flight
control has recently been considered by NASA and the
United states Air force as a key technological milestone
for the twenty first century [11].

Mobile robot formations, their creation and mainte-
nance, have been gaining widespread attention from the
scientific community in recent years [13], [11], [5], and
several control strategies have been proposed with the in-
tent of increasing knowledge in this area. Not only has
the control problems in multi-agent systems been tackled,
but improvements in neighbor areas such as communica-
tion systems for consensus problems and global position-
ing systems for mobile robots, has also been occurring.

2. Kinematic Equations

This section intends to present the kinematic equations
of the mobile robot and the target tracking problem.

The classic kinematic model of a robot is obtained
when dynamic effects such as, for instance, the robot’s
weight and inertia as well as slip between the robot’s
wheels and the floor are not taken into account [17] [9]
[3]. In this model, the robot is considered a solid weight-
less body which is able to move freely on the horizon-
tal plane and able to achieve infinite accelerations though
subjected to non-holonomic constraints. In Figure 1, the
geometric parameters as well as the global W and mobile
M coordinate systems are presented.

In Figure 1, s represents the distance in the x axis be-
tween the center of mass of the robot and the motor axis,
b represents the distance in the y axis between the cen-
ter of the robot and the wheels, G represents the center
of mass of the mobile robot and the origin of the mobile
coordinate system M , C is the center of the AMRs mo-
tor axis. In this model, the inputs of the system are the
angular velocity at which each wheel should rotate. The
linear velocity of each wheel can be calculated by using
equations (1) and (2), where the subscripts l and r refer to
left and right wheels,respectively.

vl = rΩl (1)
vr = rΩr (2)



Figure 1. Geometric parameters of the mo-
bile robot

The mobile robot’s linear, angular and lateral velocities
in the mobile robot’s coordinate system can be calculated
using the following equations:

vm =
r

2
(Ωr + Ωl) (3)

θ̇m =
r

2b
(Ωr − Ωl) (4)

ζm =
sr

2b
(Ωr − Ωl) (5)

where vm represents the mobile robots linear velocity, θ̇
represents the robots angular velocity and ζm represents
the carts lateral velocity. r is the radius of the robot’s
wheels, s as can be seen in (1) is the distance between
the center of mass of the robot and center of the differen-
tial drive system and b is the distance between the wheels
and the center of the differential drive.

Throughout this work, it is assumed, as usual in the
literature, that s = 0, hence the lateral velocity ζm = 0.

Lets now look at the target following problem. In this
situation, the desired errors are those that relate the errors
in the mobile frame of the pursuer with the orientation and
both angular and linear velocities of the robots.

Considering an autonomous mobile robot moving in
the fixed global frame as a target robot that must be fol-
lowed. It’s kinematic equations are presented in (6)




ẋt

ẏt

θ̇t


 =




vt cos θt

vt sin θt

ωt


 (6)

where vt represents the AMR’s linear velocity, θt is the
robots orientation and wt is its angular velocity.

Since both target and pursuer robots are considered
similar, their kinematic equations are considered equal. In
the following equations, vp and θp represent the pursuer
robot’s linear speed and orientation in the global coordi-
nate system.




ẋp

ẏp

θ̇p


 =




vp cos θp

vp sin θp

ωp


 (7)

By calculating and deriving the error coordinates rel-
ative to time, the following kinematic equations are ob-
tained.




ẋe

ẏe

θ̇e


 =




θ̇pye − vp + vt cos θe

−θ̇pxe + vt sin θe

θ̇t − θ̇p


 (8)

With xe, ye and θe presented below.

xe = (xt − xp) cos θp + (yt − yp) sin θp (9)
ye = (yt − yp) cos θp − (xt − xp) sin θp (10)
θe = θt − θp (11)

3. Position Based Visual Servoing

PBVS is a form of visual servoing in which, the pose
of the object to be tracked is obtained and used together
with cartesian control laws.

In this work, two position based controllers were devel-
oped. A Discrete Linear Quadratic Regulator (DLQR) and
an explicit Model Predictive Controller (explicit MPC).

3.1 Discrete Linear Quadratic Regulator
The Linear Quadratic Regulator (LQR) is an optimal

controller characterized by a quadratic cost function,also
known as the performance index, and a plant with linear
dynamics. The LQR attempts to find a control vector tra-
jectory that minimizes the quadratic cost function.

Since the developed controller for the AMR will be im-
plemented through a digital computer, lets consider the
discrete time LQR. Assume that:

J =
xT

NSNxN

2
+

1
2

N−1∑

k=0

(
xT

k Qxk + uT
k Ruk

)
(12)

subject to the following dynamic restrictions

xk+1 = Axk + Buk, (13)

where J is the cost function, x ∈ Rn is the state vector
of the plant,u ∈ Rm is the input vector, SN is the termi-
nal cost matrix, Q is a positive, symmetrical semi-definite
matrix that weighs the state, R is a positive definite sym-
metrical matrix that weighs the input.

A possible solution consists of resolving a sub-optimal
LQR problem in which a unique K matrix is computed,
such that:

ux = −Kxk (14)

If SN is a positive symmetric semi-defined matrix, then
the stationary solution S∞ to the Riccati equation can be
computed, yielding the sub-optimal Kalman gain:

K = (BT S∞B + R)−1BT S∞A (15)
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3.2 Explicit Model Predictive Control
Model Predictive control (MPC), also known as Re-

ceding Horizon Control (RHC), is one of the most pop-
ular forms of advanced process control with a large his-
tory of implementation in the chemical and oil industries
which has been receiving attention from control theorists
and practitioners due to the several unique characteristics
it presents [12]. Lets start by summarizing some of the
main advantages of MPC:

• Can take into account state, input and output con-
straints.

• Allows the system to work very near to the con-
straints without reaching them, which, in turn, may
increase the system’s performance.

• Can deal with unstable systems.

• Can deal with non minimum phase systems.

• Can deal with Multiple Input, Multiple Output
(MIMO) systems.

MPC is a control strategy in which the current control
action is obtained by solving, at each sampling instant, a
constrained finite horizon open-loop optimal control prob-
lem, such that, the current state of the system is used to
compute the optimal input and state trajectories. The so-
lution of the optimization problem is an optimal control
sequence and, according to the MPC strategy, only the first
control action in the sequence is applied to the system.

Next, a brief theoretical description of the MPC frame-
work based on the work of [7] is presented. Consider the
following discrete-time system:

{
x(k + 1) = f(x(k), u(k))
y(k) = h(x(k))

(16)

where x(k + 1) and x(k) are the values of the states at
instants k + 1 and k respectively, u(k) are the inputs at
instant k and y(k) is the system’s outputs at instant k. The
objective of the control scheme is to steer the states to an
equilibrium state xr for which the output yr = r where r
is the constant reference.

The generic cost function can be defined as:

V (xt,ut) , ϕ(x(N |t)) +
N−1∑

k=0

L(x(k + t|t), u(k + t|t))
(17)

Where xt represents the value of the states at instant
t and ut is the sequence of control actions to optimize,
also at instant t, L is the stage cost function and ϕ is
the terminal cost function associated with the optimiza-
tion problem. Several conditions must be verified for the
sequence of control actions and states to be valid. First,
u(k + t|t) ∈ U with U a convex compact subset of Rn,
x(k + t|t) ∈ X and X is a closed and convex subset of
Rn

By finding the solution of the cost function presented
in equation (17), a sequence of optimum control actions
u∗t can be found. In terms of stability, several problems
emerge from MPC theory due to the finite horizon of the
strategy. Nonetheless, several solutions have been sug-
gested such as, for instance, forcing the terminal state
x(N |t) = 0 proposed by [6] which suffers from the lim-
itation that the terminal state must be achieved in exactly
N steps. [10] also suggested using a dual mode controller
to guarantee stability. In this dual-mode approach a ter-
minal set χf which contains the origin is considered. The
MPC controller would then only have to send the states
to the terminal set χf in which a second controller would
guarantee stability.

Due to the high sampling rate of the robotic system,
online computation of the optimal control actions is not
currently feasible, considering the current computational
power of today’s CPUs. A solution proposed in [2], [16]
and [4] consists on using multiparametric programming
to calculate explicit control laws for the above problem,
which allows the control actions to be calculated offline,
hence the original problem which consisted on finding the
optimal control actions by reading the system’s current
states and optimizing the cost function presented in equa-
tion 17, becomes a problem of reading the system’s cur-
rent states and verifying in which region of the space state
the system is currently in and using the explicit law for
that region of the space state.

The model predictive controller obtained in this work
was developed using Bemporad’s hybrid toolbox which
uses multiparametric programming to obtain the explicit
control laws for the state space subjected to the previously
described restrictions. To guarantee stability, Bemporad
adds a terminal cost function and uses a linear quadratic
regulator to obtain adequate gains for the terminal cost
function.

4 Communication Architecture and Forma-
tion Control Strategy

In both decentralized and centralized (networked) con-
trol systems, communication between agents is funda-
mental to increase stability and performance of the multi
agent system [3].

Several approaches have been proposed in recent years
that attempt to promote fast, reliable seemingness com-
munication between devices with the intent of allowing
realtime information exchange between agents.

However the speed and reliability of the communica-
tions are not the only focal point in information exchange
protocols. The ease of integration of new agents that want
to enter the system and the flexibility of using the com-
munication protocol with any programming language or
operating system is equally important and has deserved
attention from investigators from diverse fields.

In this work, the approach chosen to transmit and ex-
change information between the several agents (robots) is
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the User Datagram Protocol (UDP).

4.1 UDP
A UDP information exchange scheme presents several

interesting characteristics that makes it a classic choice in
such systems. The main qualities of UDP communica-
tions responsible for its popularity in noncritical realtime
information exchange systems are resumed below:

• UDP does not require connections to be created or
destroyed between the origin and the destination of
the message, hence the required to send information
is largely reduced.

• In question and answer applications, UDP sends one
fifth of the packages that TCP sends due to the way
information is encapsulated.

• No verification of package arrival is performed which
speeds up transmission of data and lowers network
latency.

• Packages sent as datagrams. Packets are sent individ-
ually and are guaranteed to be whole if they arrive.
Packets have definite bounds and no split or merge
into data streams may exist.

• Supports multicasting and broadcasting.

5 Formation Control Strategy

Lets start by recalling some of the basic concepts re-
garding formation design and position.

The formation communication strategy is one of the
key factors in controlling a formation since it defines the
relations between agents. In this article, a Neighbor-
referenced formation communication strategy will be
tackled.

Besides the formation communication strategy, the
shape of the formations is another key factor in the def-
inition of relations between agents. Formations with dif-
ferent shapes require different information flows between
agents to remain stable and to obtain an adequate perfor-
mance.

In neighbor-referenced formations, the information
flows between adjacent agents of the system, in other
words, the system works in a decentralized fashion since
each agent only has local information of the system [3].

Lets consider the simplest possible neighbor-
referenced formation. That would be a platoon formation
in which, each agent only receives information from the
agent in front (if any) and the agent behind (if any).

One question that usually arises is what information
should actually be exchanged between agents? The nor-
mal choice is the state and input information (xe, ye, θe,
vl, ωe) of the neighbor robots.

The information of the neighbor robots inputs are used
as feedforward terms while the neighbors state informa-
tion is generally used to calculate the state information to
the controller.

Lets start by looking into the longitudinal error prob-
lem. This problem is quite serious since an incorrect error
calculation can lead to incorrect control actions which in
turn can lead to collisions between system agents. The
Longitudinal error calculation problem can be seen as a
weighting problem where two different objectives have to
be weighed. The first objective is to maintain the robot ex-
actly in the middle of the adjacent robots. This is essential
since it minimizes the probability of collisions between
agents and can be realized by forcing to zero, the follow-
ing error equation:

xej
= (xj−1−xj)− (xj−xj+1), j ∈ [2, ..., n−1] (18)

where j is the jth robot of a formation with a total of n
robots.

However the above state equation is not enough to
guarantee that the robots will not collide or spread apart
to the point where the distanced cannot be measured, be-
sides, the above state equation is not valid for the last mo-
bile robot in the formation.

The second objective is for the robot to maintain a pre-
defined distance from the robot in front or the robot be-
hind. One need to only set that the longitudinal distance to
the AMR in front is the predefined distance since the con-
dition presented in (18) will guarantee that the distance to
the robot behind will also be the same predefined distance.

The predefined distance error equation can be repre-
sented by the following expression:

xej = −(xj−1 − xj) + d, j ∈ [2, ..., n] (19)

Notice that this equation can also be applied the final robot
of the formation.

By weighing the two equations, the following formula
arises.

xej =
[

K1 K2

] [
(xj−1 − xj)− (xj − xj+1)

−(xj−1 − xj) + d

]
,

j ∈ [2, n− 1] (20)

where, K1 and K2 represent the weights of each error,
hence:

K1 + K2 = 1 (21)

In the case of the last mobile robot, the equation pans
down to equation (19). Therefore, by mathematical ma-
nipulation of equations (18) - (21) the longitudinal state
equation of agent n− 1 is:

xen−1 = xen + K1(xn−2 − xn−1 − d) (22)

With:
xen = (xn−1 − xn + d) (23)

If the weights (K1, K2) are constant for all robots, the
error equation reduces to the following equation:

xej−2 = xej−1 − (xn−1 − xn)− (xj−2 − xj−1) + b

b = K1((xj−3 − xj−2)− (xj−2 − xj−1))
(24)
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If K1 = 1, the AMRs in the middle of the platoon will
focus on keeping themselves in the middle of the two
neighboring robots while the last robot in the formation
will only focus on maintaining a predefined distance to
the second last robot. Since the second last robot will try
to keep the distance between the adjacent robots the same
and the distance to the robot behind it will remain at the
predefined distance, the distance to the robot in front will
become the predefined distance after some time instances.
This will propagate through the formation until all robots
are exactly at the predefined distance from their neighbor
robots. In this case, the error equation is given by (25)

xej−2 = xej−1 − (xn−1 − xn)− 2(xj−2 − xj−1) +
+(xj−3 − xj−2) (25)

The transversal error calculation is simpler. Although
in some situations keeping in the center of the neighbor
robots can be benefic (e.g., in some wedge and diamond
formations, the correct transversal position is when the
AMR is at the transversal center of its neighbors), simply
trying to keep the transversal error in relation to the previ-
ous robot equal to a predefined constant is acceptable.

yej = −(yj−1 − yj) + d, j ∈ [2, ..., n] (26)

The orientation error can be considered in the same
way as the transversal error hence equation (27) arises.

θej = −(θj−1 − θj) + d, j ∈ [2, ..., n] (27)

The system input information from neighbor robots can
be used in a similar form as the state information, however
the input information works as feedforward terms for the
controller. As with the transversal and orientation errors,
the angular velocity of agent j − 1 should be used as a
feedforward term while the average of the linear velocities
of adjacent robots should be used as a feedforward term to
help maximize the space between both neighbor vehicles.

6 Simulation and Experimental Results

6.1 Simulation Results - DLQR Controller
A DLQR controller with the following Q and R

weighting matrices was used as a local controller.

Q =




2000 0 0
0 19300 0
0 0 10


 (28)

R =
[
2× 10+03 0

0 2× 10+03

]
(29)

The mean, maximum and mean square error of the con-
troller in simulation are presented in the following tables.
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Figure 2. Platoon formation in a Neighbor
Referenced formation position

Longitudinal error
(m)

First pursuer Second pursuer
Average error -0.0011 -0.0319

Maximum absolute error 0.2760 0.0534
Mean square error 0.0016 0.0015

Table 1. Longitudinal error of the Neighbor
Referenced platoon formation

Longitudinal error
(m)

First pursuer Second pursuer
Average error -0.0337 -0.0414

Maximum absolute error 0.2346 0.1580
Mean square error 0.0056 0.0056

Table 2. Transversal error of the Neighbor
Referenced platoon formation

Longitudinal error
(m)

First pursuer Second pursuer
Average error 0.1657 0.1685

Maximum absolute error 0.5658 0.3690
Mean square error 0.0819 0.0656

Table 3. Orientation error of the Neighbor
Referenced platoon formation

Longitudinal error
(m)

First pursuer Second pursuer
Average error 0.0494 0.0393

Maximum absolute error 0.2048 0.0928
Mean square error 0.0031 0.0017

Table 4. Longitudinal Error of the Neighbor
Referenced platoon formation

6.2 Simulation Results - Explicit MPC Controller

The state and input weighing matrices used to create
the explicit MPC are presented below
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Longitudinal error
(m)

First pursuer Second pursuer
Average error 0.0262 0.0026

Maximum absolute error 0.3604 0.3583
Mean square error 0.0095 0.0061

Table 5. Transversal Error of the Neighbor
Referenced platoon formation

Longitudinal error
(m)

First pursuer Second pursuer
Average error 0.1615 0.1819

Maximum absolute error 0.7427 0.3914
Mean square error 0.0908 0.0793

Table 6. Orientation Error of the Neighbor
Referenced platoon formation

Q =




2000 0 0
0 19300 0
0 0 1, 0× 10−01


 (30)

R =
[
0.1 0
0 0.01

]
(31)

6.3 Experimental Results
The following graphs represent the evolution of the

states during experimental tests. The referencing scheme
used was neighbor-based and the local controller chosen
was the explicit MPC controller.

10 20 30 40 50 60 70
Time (s)

Longitudinal error through time

10 20 30 40 50 60 70
Time (s)

Transversal error through time

10 20 30 40 50 60 70
Time (S)

Orientation error through time

Figure 3. Errors of the first pursuer robot
in a platoon formation, in a Neighbor Ref-
erenced formation and using a local explicit
MPC controller.

6.4 Discussion of the Results
By analyzing the above graphs and tables several con-

clusions regarding the efficiency of both control schemes
can be withdrawn. In simulation, both control schemes

Longitudinal error
(m)

First pursuer Second pursuer
Average error -0.0087 0.0059

Maximum absolute error 0.1212 0.1227
Mean square error 4.3913× 10−04 9.3130× 10−04

Table 7. Longitudinal Error of the Neighbor
Referenced platoon formation

Longitudinal error
(m)

First pursuer Second pursuer
Average error -0.0011 0.0055

Maximum absolute error 0.0737 0.1107
Mean square error 2.9314× 10−04 7.6481× 10−04

Table 8. Transversal Error of the Neighbor
Referenced platoon formation

Longitudinal error
(m)

First pursuer Second pursuer
Average error -0.1069 -0.2507

Maximum absolute error 0.3308 0.4220
Mean square error 0.0172 0.0655

Table 9. Orientation Error of the Neighbor
Referenced platoon formation

(DLQR and the explicit MPC) present average longitudi-
nal and transversal errors fewer than five centimeters and
maximum errors under forty centimeters. These errors are
well below the predefined distance of one meter between
mobile robots hence, should be enough to avoid collisions
between AMRs and to guarantee an adequate control over
the formation. The orientation error in simulation was
considerably higher than the longitudinal and transversal
errors. This is largely due to the very low weights ap-
plied to the orientation state in the Q state weighing ma-
trix. The experimental results confirmed what was pre-
viously verified in the simulations. The average longi-
tudinal and transversal errors of the AMRs are, in aver-
age, almost null while the orientation error is substantially
higher. It is almost of importance to note that the exper-
imental tests were performed in an unstructured environ-
ment which complicates the control of the formation.

7 CONCLUSIONS

The main objective of this paper was to study the prob-
lems associated with the maintenance of formations of
mobile robots and develop control solutions able to main-
tain a formation of robots as well as implementing a sys-
tem able to localize robots in an indoor environment.

Although is possible to develop the controllers based
on the dynamic model of the robot, using the kinematic
equations is advantageous since it greatly reduces the
complexity of the problem and simultaneously, the com-
plexity of the controllers. For the system to be approxi-
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mately kinematic, a controller with a low sampling time
(compared to the sampling time of the target following
controller) had to be programmed into a microprocessor
and encoders installed on the AMR.

Using pose estimation algorithms which allowed the
error functions to be obtained in cartesian coordinates,
several position based control strategies were imple-
mented. The strategies ranged from a discrete LQR, in
which the control law is unique for the entire state space,
to an explicit MPC controller, due to the very low sam-
pling time of the system. By using multi-parametric pro-
gramming, an explicit control law dependant on the cur-
rent states of the system was obtained, hence reducing the
online implementation of the problem from the resolution
of an optimization problem to a lookup table problem.
To develop the controllers, the kinematic equations of the
robot were linearized at the origin.

The above controllers were tested and proved to work.
From the tests presented, one can easily conclude that the
importance of the orientation error, in this particular for-
mation shape, is very small when compared to that of the
longitudinal or transversal errors.
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