
Mosaic Based Flexible Navigation for AGVs 
 

André Lucas, Camilo Christo, Miguel Pedro Silva, Carlos Cardeira 
IDMEC/IST TU-Lisbon, Portugal 

{cchristo@dem., mps@,carlos.cardeira@}ist.utl.pt 

Abstract-Highly flexible systems require that Automatic Guided 
Vehicles (AGVs) in a plant navigate autonomously and changes 
in their missions should not require difficult setup procedures. 
In this paper we address the problem of localization of a mobile 
robot in a indoor environment. The robot is able to find its 
position without any grounded wires, landmarks or laser 
beacons. The robot uses images acquired in the roof to compute 
its position and navigate between coordinates. The main 
contribution is the absence of external services to solve the AGV 
localization problem, allowing fast reconfiguration. 

I. INTRODUCTION 

Today a manufacturing plant has to be flexible and 
seamless reconfigurable. Currently, a large amount of the 
total cost of a manufacturing plant over its lifetime is spent on 
installation, setup and reconfiguration. If a plant is subject to 
changes in its process flow or changes due to the introduction 
of new or replacement of noncompetitive equipment that is 
provided by different makers, then the downtime and lifetime 
costs rise considerably [James 2005]. 

The problem of the inflexible communication infrastructure 
can be largely eased by the use of wireless technologies 
[Cardeira 2006]. The problem of software reconfiguration is 
being addressed by several ongoing works namely by the use 
of service oriented architectures [Bepperling 2006].  

In this paper we address the localization problem and we 
present a highly flexible localization system for Automatic 
Guided Vehicles (AGVs), as a way to ease the problem of 
locating a robot in a dynamic environment. 

The localization system is highly reconfigurable as the 
robot builds a map of the environment and uses it to define its 
localization in the environment. At any time, the robot can 
rebuild the map to self reconfigure to environment changes. 

A. Guiding AGVs 
There are several different methods to guide AGVs. Wire-

guidance is the simplest form of navigation. An RF signal is 
transmitted from a wire buried in a slot below the floor to a 
sensor under the vehicle. The sensor detects the signal and 
adjusts the position of the vehicle to keep it on the path. 
Because the slot must be cut into the floor, wire-guided 
systems are most commonly used where paths are unlikely to 
change [Trebilcock 2007].  

However, when fast reconfiguration is a must, more 
autonomous and flexible ways to let the AGVs navigate are 
necessary. Some solutions rely on the use of beacons along 
the factory that act like GPS for triangulation. However if we 
want the AGV to be really autonomous, we should not rely on 
external systems. It is up to the AGV to autonomously build a 
map and guide itself in the environment. At least, the AGV 

should be guided through the previously define track and then 
be able to reproduce that track without accumulating errors 
like a teach pendant robot. 

 

B. MBLAM - Mosaic-based Localization and mapping 
The simultaneous localization and mapping is nowadays an 

area of big interest and under great investigation, it combines 
methodologies of several areas like pose-estimation, 
computer vision, matrix algebra, etc. In this work is made and 
tested a different approach that presents a solution to the 
problems associated with the localization and map building. 
The developed methodology consists in a Mosaic-based 
Localization and Mapping (MBLAM). The methods used are 
focused in missions where the vehicle is ordered to navigate 
in an unknown environment and build a map of the 
environment while locating itself in this map. Using MBLAM 
the robot builds maps from video visual mosaics. As far as 
new image frames overlap the precedent image, the robot 
continues building the overall map. When the map is built, 
the robot compares the actual image to the map to find where 
the image is in the global map. Apart from calibration 
procedures, the localization of the image in the map has a 
direct correspondence with the localization of the robot in the 
environment. The robot is hence able to determine its position 
by a comparison of the actual view with the global view of 
the map previously built. The “map” is indeed the global 
image of the environment and as long as the robot can find 
the actual image in the global image, it is actually find its 
position in the map. 

C. SLAM - Simultaneous Localization and mapping 
Simultaneous Localization and Mapping (SLAM) is 

perhaps the central information engineering problem in 
mobile robotics research. Being simple to state but 
challenging to solve: The Simultaneous Localisation and 
Mapping (SLAM) problem asks if it is possible for a mobile 
robot to be placed at an unknown location in an unknown 
environment and for the robot to incrementally build a 
consistent map of this environment while simultaneously 
determining its location within this map. A solution to the 
SLAM problem has been seen as a `holy grail' for the mobile 
robotics community as it would provide the means to make a 
robot truly autonomous.” [Durrant-Whyte, 2006]. The main 
difficulty of the localization and mapping becomes from the 
interaction between the robot and the environment where it 
operates, normally associated with noisy sensing and 
measuring. 



Solutions to the issues around simultaneous localization 
and mapping are very important due to their contribution to 
increase the autonomy of mobile robots.  

There is a need for methods that allow a larger autonomy in 
real world navigation attending to the fact that some other 
position systems might be inefficient or simply unavailable 
(e.g GPS). Nowadays there is a big incentive to the use of 
localization and mapping methodologies in new fields as well 
as a growing commercial interest in new applications like low 
cost cleaning robots for domestic usage or even touristic 
guides operating in like museums. Without this approach it 
would be necessary the use of expensive devices (like 
predefined tracks) which are much less flexible and require 
changes to the environment. 

D. RELATED WORK
Mechanisms and methodologies have been developed for 

mobile robots in order to build a map of an unknown 
environment and, simultaneously, use it to navigate. There is 
a wide field of applications, from remote operate robots that 
work in other planets like Mars to their usage in unmanned 
robots working in the bottom of the ocean. Some of these 
methodologies are based on the same principle, the use of an 
estimate of the mobile robot pose based on landmarks. 
Among these approaches the most common are those that 
apply the Extended Kalman Filter (EKF), the Sparse 
Extended Information Filter (SEIF), the Unscented Kalman 
Filter (UKF) and the particle filters (FastSLAM). 

One implementation well succeeded of the EKF was 
accomplished by [Davison and Murray, 2002], using an 
active vision scheme in a vehicle operating in a small 
environment that was rich in easily extractable landmarks. 
The vehicle was able to execute trajectories and also 
accurately determine its position, with errors scaled to 
centimeters. Another solution, this one base on SEIF, was 
reached by [Liu and Thrun, 2003], to an outdoor environment 
using an automobile as a mobile platform and where the 
results were similar to the usage of the EKF but with 
improvements in the computational complexity and bigger 
ability to use high dimension maps.  

In [Sunderhauf et al., 2007] was presented a solution to this 
problematic using the UKF with monocular vision and based 
on simulation results they support the applicability of this 
methodology to real world systems(in this case an aircraft) 

Results of the implementation of a particle filter where 
reached by [Barfoot, 2005], with a stereo camera system and 
visual landmarks extracted by the method of Scale Invariant 
Feature Transform (SIFT). Pose estimations at 3Hz with an 
error of 4% to all the distance traveled were obtained. 

In order to solve the problem of the simultaneous 
localization and mapping an approach based in visual mosaics 
was implemented both in land and subsea applications. 

 [Blanc et al. 2005] used the ceiling as reference and was 
able to build a map of visual mosaics, navigate and determine 
its position. 

In subsea applications, the method of mosaic based 
navigation was applied to an unmanned vehicle while it 
operated in the bottom of the ocean in order to determine an 
accurate estimate of the robot’s position [Gracias et al., 
2003]. 

Several approaches are currently being developed for the 
simultaneously localization and mapping, mostly with the 
purpose of increasing the autonomy of robotic systems. 

II. MOSAIC-BASED LOCALIZATION AND 
MAPPING 

The present work is based on the methodology of using 
visual mosaics to simultaneously build a map and estimate 
the position. To accomplish that goal is necessary to 
overcome the three following steps: mapping, localization 
and navigation. The scheme of the mapping process is 
illustrated in the diagram below (Figure 1): 

Those are the four steps that allow building a mosaic able 
to support the MBLAM methodology. 

Fig. 1.  Mosaic Construction. 
  

A. Image Acquisition 
A common practice to acquire images is the use of two 

cameras and implement a stereovision system able to make a 
3D view of the environment. We did not follow this approach 
and we used just an ordinary web cam. The monocular 
system was chosen attending to: 

• The increase of the computational burden associated with 
images captured by two different sources. 

• Higher complexity when operating with stereo vision 
systems as well as the need of more accurate and expensive 
material in order to achieve a good performance. 

During the development of the MBLAM it was assumed 
that the camera did not suffer from image border distortion.  

B. Landmark Extraction 
In this work, the Harris and Stephens corner detector 

[Harris and Stephens, 1988] was used to extract visual 
references. This method determines the matrix of the corners 
metric values in the images. This corner detector avoids the 
computational burden associated to other methods by 
alternatively calc w f metric values: ulate the follo ing matrix o
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 � and � are the gradients of the processed image in the 
correspondent directions and the operator � is the convolution 



operator. The variable � is associated with the sensibility 
factor which is related to the probability of finding more 
corners. At last � is the matrix of the filtering coefficients, 
avoiding the detection of small and meaningless variations. 

The result of these operations is a detector distinguishable 
by being robust to light changes and also big variations of the 
viewpoint. 

Figures 2 and 3, show an image before and after the 
application of this corner detector. We draw the attention that 
not all detected corners are real corners. This could be 
achieved by a manual tuning of �, but we prefer to put the 
obtained image “as is” to illustrate the actual obtained result. 
Many corners are false corners but the important is that 
enough real corners are found. Real corners will likely be 
present in other views of the same scene. This will be 
important for the motion estimation. 

 

C. Motion Estimation 
The motion estimation method is the heart of the whole 

process of building the visual mosaic. It is responsible to find 
the outliers between the landmarks extracted in the images. It 
also determines the transformation matrix to apply to an 
image so it can find a best fit to the previous one with the 
maximum point correspondence between them. This is the 
step that allows the correct assemblage of the frames 
sequence and it is based on the RANdom SAmple Consensus 
(RANSAC) algorithm. 

The RANSAC algorithm relies on a distance threshold. A 
pair of points, ��� (image  �, set of points  �) and ��� (image  �, set of points  �) is an inlier only when the distance between  ��� and the projection of ��� based on the transformation 
matrix falls within the specified threshold. 

The distance metric used in the RANSAC algorithm is 
obtained as fo ll ows: 
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Fig. 2.  Building view 
  

 
In a projective transformation the resulting image is 

achieved by the following equation applied to each one of the 
points �.# /�0of the i in tial image: 
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where & is a matrix 3-by-3 projection matrix. 
Changing the coordinates according to the following 

equations: 
 

2 � 2�303  

4 � 43�30 

Fig. 3.  Harris corner detection of the building view 
  

 
resulting the next equiv l s: a ent expression
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where 2 and 4 are the coordinates of each point after the 

projective transformation. 
For a better understanding of the result of such 

transformations figures 4 and 5 pro ides an example: v
In the image of figure 4, after applying the following 

projective transformation matrix 8, we obtain the image in 
figure 5. 
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Fig. 6.  First image: detected landmarks 
  

 

 
Fig. 4.  Original image 
  

D. Assemblage
The principle of acquiring the visual mosaic is not 

complex, it consists simply in stitching the images captured 
in an instant k after applied the projective transformation H, 
to the global mosaic at instant C0 	 0�. By repeating 
consecutively this process the complete mosaic is achieved. 

Figures 6, 7, 8 and 9, present the creation of a mosaic using 
the capability of the process described by landmark 
extraction, motion estimation and final assemblage. 

 

III. LOCALIZATION 

 
The localization of the robot is made assuming the robot is 

in the center of the image. Actually, in indoor environments, 
we used a robot with a camera pointing to the ceiling. 
Attending to the fact that the robot navigates in the ground 
plan the position of the robot corresponds to the center of the 
actual frame (instant k) in the global map built iteratively. 
The orientation of the camera is similar to the minerva robot 
[Thrun et al., 1999], where the camera is also pointing to the 
ceiling in order to attain the best results. 

 
 
Fig. 5.  Image after the projective transformation 
  

 
Fig. 8.  Estimated correspondence 
  

 
Fig. 7.  Second image: detected landmarks 
  

 
Fig. 9.  Final assemblage 
  



This way, the position of the robot is determined in the 
global map built according to the following image (figure 
10): 

 
 

 
 
The determination o h  by: f t e centroid is obtained
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This way, the position of the robot is determined in the 

global map built. 

IV. NAVIGATION 

A. Mobile platform 
 
The mobile robot Rasteirinho was the platform used in this 

work, it is a low cost robot built with the purpose to provide a 
better interaction between the theory knowledge acquired and 
their interesting practical applications [Cardeira and Sa da 
Costa, 2005]. The robot has an electrical circuit that emulates 
a serial communications port into USB and a 16F876A PIC. 
For this work, changes were made to the robot. Each wheel 
has now an associated encoder and a metal structure was built 
to support the PC(Personal Computer) and also the camera. 
The final assemblage of this device may be seen in picture 11. 

 
 
 
 
 
 
 
 
 
 
 
 
 

In order to achieve the desired velocity in each wheel to 
navigate over predefined trajectories it was used a low level 
controller operating in the PIC 16F876A. This controller is 
responsible to make the bridge between the information 
ordered by the software on the PC and the velocity attained 
by the robot. 

 
Fig. 10.  Frame centroid 
  

V. RESULTS 

For the implementation of the developed MBLAM 
methodology we based our system in the Matlab demo Video 
Mosaicking available in the Video and Image Processing 
Toolbox. It was modified, improved and adjusted in order to 
create a video mosaic from a video sequence. This mosaic 
allows creating the map of the environment where the robot 
operates. 

After the proper adjustments, the resulting model for video 
mosaicking allows to create panorama views like the one in 
figure 12 and also a map, that is it main purpose in this work. 
By integrating the process of map creation with the methods 
of localization and navigation, we achieved an approach that 
works as a solution to the problem of simultaneous 
localization and mapping, the Mosaic-Based Localization and 
mapping. 

 

Several experiments and tests were made to define the 
applicability of this approach to real-time application in an 
indoor environment. Here we present one experiment that 
refers to the ability of the MBLAM to provide the robot with 
the ability of navigate and control its trajectory based on its 
global position. The robot is able to follow a straight line in 
spite of the accumulated errors of the encoders that tend to 
make the robot deviate from the predefined trajectory. 

 
Fig. 12.  Panorama view 

 

B. Controlled straight line 
 
For this test the trajectory was a straight line, the control 

methodology consisted in increasing or decreasing the speed 
of the robot wheels in order to stay in a previously defined 
gap. As soon as the robot crossed the limits of the gap the 
velocity of the proper wheel would be increased. Specifically, 
if it crossed the upper limit (410pixel), on the right, the speed 
of the right wheel would be increased by 1rad�1. The same 
would respectively happen if it crossed the lower bound. This 
way the robot followed a reference line for x = 400pixel. 

 
 
Fig. 11.  Robot “Rasteirinho” 
  

 
Figure 13 shows the robot trajectory as seended from the 

camera pointed to the ceiling. The experiments presented 



above denote the successful usage of visual mosaics to create 
a map that is used to support the navigation, which is based 
on the global positioning. The whole process was performed 
simultaneously and in real-time. 

In this work was also started a methodology that allows the 
robot to determine its position in a previously built map of the 
environment, by the usage of SIFT descriptors. In this 
method, a current frame of the environment is compared to 
the global map in order to determine the robot’s location. 
This procedure is useful when the map is already built. 

VI. CONCLUSION 

This paper presents the methodology of Mosaic Based 
localization and mapping as a solution to the simultaneous 
localization and map building problematic. It provides the 
robot with the autonomy of simultaneously navigate, locate 

and build a map in an unknown environment. All the methods 
are exclusively vision-based and processed simultaneously at 
real-time. In the implementation was used a wheeled low cost 
robot operating in an indoor environment using the ceiling as 
visual reference to build a map through visual mosaics. The 
robot is able to drive around autonomously and create its 
world representation as well as execute predefined 
trajectories due to its control methods based on the global 
position. 
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Fig. 13.  Global map, controlled straight line 
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