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Abstract. This paper presents the experimental validation of a docking
system for a differential drive robot. The docking problem is solved with
a smooth, time-invariant, globally asymptotically stable feedback control
law which allows for a very human-like closed-loop steering that drives
the robot to a certain goal with a desired attitude and a tunable cur-
vature. Simulations of the docking problem are presented that illustrate
the performance of the system and it is also validated by performing
tests on the aforementioned real robot.
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1 Introduction

Industrial automation has experienced huge advance in the last decades [1].
Flexible automation manufacturing cells require the use of automatic handling
solutions usually resorting to Automatic Guided Vehicles (AGVs). Nowadays
the fleets of AGVs must navigate among warehouses, automated workcells, and
charging stations. Thus, the automated docking of mobile robotic platforms,
such as AGVs, with minimal structuring of the environment is still a active
topic of research [2]. The solutions found in the literature to solve this problem
vary both in algorithm and sensor payload. One approach, defined as visual
servoing, with an early contribution reported in [3], consists of representing a
given task directly by an error relative to a goal image to be captured by the
vision system. This approach became popular from 1990 onward with works
such as [4], with a great contribute of the task function approach [5]. Visual
servoing benefits from contributes with out-of-body cameras, i.e., Camera-Space
Manipulation (CSM) [6], Mobile Camera-Space Manipulation (MCSM) which
extends the latter with body embedded cameras and, more recently, [7] which
computes the goal configuration using visual landmarks. Other approaches to
the docking problem include the computation of feedback control laws by using
Lyapunov and backstepping techniques that lead to an Ultra-Short Baseline
(USBL) acoustic positioning system [8] applied on the underwater counterpart
of this work, the use of electromagnetic homing systems [9], optical guidance
approaches such as [10] and computing the deceleration needed by a robot,



resorting to an estimation of a time-to-contact (τ) through optical flow field
divergence measurements of an image stream as in [11] and references therein.
In [12] a method based on the direction of arrival (DOA) of signals transmitted
by RFID transponders is proposed, showing that a robot can dock in a station
transmitting through an RFID by using two antennae installed on-board of the
vehicle. A method proposing the estimation of the position and orientation of a
visual landmark is presented in [13] to help on docking and automatic recharging,
thus being similar to the work presented herein.

This work validates a functional docking system using a full state feedback
law inspired in [14] which drives a nonholonomic vehicle from any initial posi-
tion to a certain defined goal with a desired attitude. Mobile robots resorting to
vision systems allow for more versatility in an industrial facility regarding dock-
ing stations, positioning of cargo pallets, consequently simplifying the overall
task of map building and task planning, dropping the need of extreme precision
regarding these actions.

The present paper is organised as follows: Details on the feedback control
law used in this work are presented in Section 2, which is followed by the results
of real-time experiments in Section 3. Finally, some conclusions on the overall
performance of the proposed strategies are drawn in Section 4.

2 Docking problem

In this section, the model of the mobile robot and the operation environment is
introduced (see [15] for details) and the implemented control law is described.
Suppose the state of the robot is z = [ex ey ψ]

T ∈ R3 composed by quantities
depicted in Fig. 1.
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Fig. 1: Depiction of robot and docking station frames.



Representing the docking station position e(t) ∈ R2 and attitude ψ(t) ∈ R
in the body frame allows for the derivation of linear kinematics and output equa-
tions. Furthermore, it is also possible to estimate linear and angular slippages,
respectively b ∈ R and s ∈ R, that may occur due to the lack of knowledge of the
contact points with the floor as well as the lack of precision in the measurement
of each wheel radius or asymmetries in mechanical construction. Both slippages
are considered to be slow time-varying or even constant (ḃ = 0 and ṡ = 0). The
state vectors estimated by the position and attitude estimators are, respectively,
x =

[
eT b

]T and θ = [ψ s]
T . Both systems are represented in (1){

θ̇(t) = Aθθ(t) + Bθω(t) + ν(t)

y(t) = ψ(t) + η(t)
, (1)

where

Aθ =

[
0 −1
0 0

]
,Bθ =

[
−1
0

]
,

and (2) {
ẋ(t) = Ax(ω(t))x(t) + Bxv̄(t) + v(t)

y(t) = e(t) + w(t)
, (2)

where

Ax (ω(t)) =

[
0 ω −1
−ω 0 0
0 0 0

]
,Bx =

[−1
0
0

]
.

Notice that both systems are linear and do not make use of any approximation.
Furthermore, (1) originates an optimal observer and (2) a sub-optimal one, as
ω is a measured quantity, rather than a known one. Both systems are proven
observable and their Kalman Filter application is detailed in [15].

Notice now that z = [ex ey ψ]
T can be represented in the form

ż = fω(z)ω + fv(z)v, (3)

where

fω =

[
ey
−ex
−1

]
, fv =

[−1
0
0

]
.

The present work follows Lyapunov’s direct method of finding a scalar energy-like
function V (z) and devise a control law u(z) that ensures the resulting closed-
loop system is asymptotically stable (the goal is to park the vehicle in a position
z∗). This leads to a smooth and time invariant control law. However, a theorem



developed by Brockett shown in [16], states that, for systems in the structure

ż =

m∑
i=1

fi(z)ui,

with vectors fi(z) being linearly independent and continuously differentiable at
a point z∗, then there exists a stabilization solution, with a smooth and time
invariant feedback law, if and only if m = n, where n is the order of the system,
meaning there need to be the same number of control parameters as the dimen-
sion of the state vector to be controlled. The system in (3) does not respect the
last condition and clearly has fω and fv independent at the origin. This would
then require the use of time-varying or discontinuous control laws in order to
achieve the desired stabilization. Seeing as the need of stabilizing n states at a
point z∗ is still the objective, then only a system with singularities is of interest.
With this in mind, a new system is proposed in [14]. The said system, repre-
sented in (4), is based on a state vector that is isomorphic with the one in (3),
characterized by the isomorphism g : R3 \ {0} 7→ R3 \ {0}

e = ‖e‖
α = atan(ey/ex)

φ = atan(ey/ex)− ψ
,

variables depicted in Figure 1, leading to the kinematics
ė = −v cosα

α̇ = −ω + v sinα
e

φ̇ = v sinα
e

. (4)

Due to the singularity at the origin, Brockett’s theorem no longer applies, since
the regularity assumptions do not hold, and so the asymptotic stabilization of
(4) is possible. One then cannot formally use the definition of equilibrium point
to describe the origin, since it is now located in the frontier of the open set
of validity of the system dynamics. The objective of the control law is then to
asymptotically drive the system to zp

∗ = [0 0 0]
T without attaining e = 0

in a finite time, where zp = [e α φ] is henceforth the notation used for the
new state vector. A simple choice for a candidate Lyapunov function is the often
used quadratic error form

V (z) =
1

2
λe2︸ ︷︷ ︸
V1

+
1

2
α2 +

1

2
hφ2︸ ︷︷ ︸

V2

, λ, h > 0 (5)

where λ and h are positive weighting constants that will help shape the control
law. By separating the scalar function in two terms, we have that the first term
refers to the error in distance to the target position, and the second term corre-
sponds to the to a "alignment vector" error

[
α
√
hφ
]
. It is clear by now that

the a candidate of a scalar function has been chosen and then a function u(zp)
will be derived in order for the behaviour of V along the trajectory of (4) to



drive the state asymptotically to the origin. Taking then the derivative V̇ , given
by

V̇ = λeė+
(
αα̇+ hφφ̇

)
= λev cosα+ α

[
−ω + v

sinα(α+ hφ)

αe

]
. (6)

The first term of (6) can be made non-positive by letting

v = γe cosα, γ > 0, (7)

leading to

V̇1 = −λγ cos2 αe2 ≤ 0. (8)

This choice of linear velocity control law ensures that the validity of (4) through-
out the parking problem, since V1 is lower bounded and non-increasing, making
it asymptotically converge to a non negative finite limit, thus ensuring e exhibits
the same behaviour. The same strategy is applied to the second term, and so
expression for the angular velocity control law is

ω = kα+ v
sinα(α+ hφ)

αe
(7)
= kα+ γ

cosα sinα(α+ hφ)

α
. (9)

The derivative of the total Lyapunov function then becomes

V̇ = −γ
(
cos2 α

)
e2 − kα2 ≤ 0, (10)

which is negative semi definite. It is however possible, as described in [14], to
prove that the origin is globally asymptotically stable by using LaSalle’s theorem
and Barbalat’s Lemma upon the inspection of the resulting closed-loop system.
Note that the objective is to have the vehicle dock in a certain station with
positive linear velocity, but it is possible to obtain different trajectories by simply
changing the goal objective (to for instance zp∗ = [0,±π,±π]). A depiction of the
trajectories performed by the system are depicted in Fig. 2, where a simulation
was performed with γ = 3, h = 1 and k = 6.

As intended, the vehicle always arrives at the target location facing, which
goes accordingly with state vector converging to the origin.
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Fig. 2: Trajectories performed with e(0) = 3 and ψ(0) = 0

3 Experimental Results

(A)
(B)

(C)

Fig. 3: (A) Docking station, (B) 3D camera and (C) Robot prototype

The focus of this section is the validation of the docking solution. The robot
prototype and landmark setup are shown in Fig. 3. The architecture of the
localization system that provides the necessary measurements is represented in
Fig. 4. Below is a summary of the parameters and initialization of both Kalman
Filters used in the observer.

– Camera noise covariance: Rx = 1× 10−2I2 and Rθ = 1× 10−2

– Plant noise covariance: Qx = diag(4.1×10−6I2, 1×10−8) and Qθ = diag(2×
10−5, 1× 10−8)

– Initial covariance matrix: Px
0 = 1I3 and Pθ0 = 0.1I3

– Initial conditions: ê and θ̂ were set to the real initial position, and both bias
estimates b̂ and ŝ were set to zero.
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Fig. 4: Estimator Modules

For the tests presented in this section, the landmark or docking station is
considered to be the origin of the inertial frame and the goal of every experiment
presented in this section was set 0.5m in front of the real landmark object being
used. Also, in every experiment, unless stated otherwise, the initial estimate of
the position was very near the real position of the mobile robot, seeing as the
estimation filters were active before the feedback loop was enabled. A saturation
of vmax = 0.2 ms−1 and ωmax = 0.2 ms−1. Figure 5 depicts the localisation
estimate and true final position of several tests carried out in the laboratory
environment. In each one of the 6 tests, represented in zoom of Fig. 5, the
prototype was able to perform a successful docking manoeuvre, even when the
initial estimate had a slight error. The final position error is represented in Table
1.

µ σ
ex [cm] 3.5 0.12
ey [cm] −0.5 0.61
ψ [◦] 0.08 0.285

Table 1: Error in docking manoeuvres.
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Fig. 5: Depiction of several docking manoeuvres and their 3σ error confidence and
ground truth of the final position (zoom).

In Fig. 6 the commands in a particular experiment are shown and the effect
that the correction of the estimate in them while Fig. 7 depicts the state variables
converging to zero. Notice that, due to the discrete nature of commands, the
vehicle never reaches the goal completely, and the error distance to the target
will depend on the value of γ and the error in the camera to body transposition
and rotation calibrations.
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Fig. 6: Time progression of commands.

4 Conclusions and Further Work

The implemented feedback control successfully drives the robot to a given goal
and is tunable to the needs of the localisation system, seeing as it is possible to
require the robot to take the same path under different speeds by just adjusting
the parameters that tune the feedback. It is also possible to achieve good results
by imposing a saturation in linear and angular velocities as to ensure convergence
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Fig. 7: Time progression of state variables and the 3σ interval for final position.

of the localisation system within the manoeuvre time frame. The robot is able
to drive itself to the correct goal even when a wrong initial position and attitude
estimate occurs, given that the docking station is, at some point, visible by the
sensor package. The error of the docking manoeuvre, within 3σ tolerance, is
3σx = 0.36 cm, 3σy = 1.83 cm and 3σθ = 0.855 ◦, being that most of it was
due to uncertainties in the camera transform and due to the quantization of the
motor commands. Also note that the 3D camera does not recognize the docking
station upon the final approach segment of the manoeuvres, which corresponds
to a 1m distance, resulting in odometry navigation during the last part of each
docking. The accuracy may improve in further work which includes other sensors
with better accuracy, such as laser range-finders, to avoid the odometry errors
during the last segment. This work can go towards 3D manoeuvres (with other
vehicles and models) and cooperative manoeuvres among multiple robots.
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