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Abstract In this paper a new method for self-
localization of mobile robots, based on a PCA posi-
tioning sensor to operate in unstructured environ-
ments, is proposed and experimentally validated. The
proposed PCA extension is able to perform the eigen-
vectors computation from a set of signals corrupted
by missing data. The sensor package considered in
this work contains a 2D depth sensor pointed upwards
to the ceiling, providing depth images with missing
data. The positioning sensor obtained is then inte-
grated in a Linear Parameter Varying mobile robot
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model to obtain a self-localization system, based on
linear Kalman filters, with globally stable position
error estimates. A study consisting in adding syn-
thetic random corrupted data to the captured depth
images revealed that this extended PCA technique is
able to reconstruct the signals, with improved accu-
racy. The self-localization system obtained is assessed
in unstructured environments and the methodologies
are validated even in the case of varying illumination
conditions.
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1 Introduction

The problem of mobile robots localization with only
onboard sensors in indoors environments has been a
great challenge to researchers in mobile robotics, see
[3, 11] and the references therein. To perform this
task, usually, mobile robots are equipped with differ-
ent types of sensors like compasses, accelerometers,
gyros, cameras, time of flight cameras and encoders,
providing enough information to the measuring sys-
tem to determine its global pose, i.e., position and
orientation in a mapped environment.
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Vision is one of the most popular sensors in
mobile robotics to provide measurements to solve
the localization, due to the large amount of infor-
mation provided on the environment, extracted from
the RGB image [14, 19, 24, 28]. However, in vision
systems remains a general limitation related to differ-
ent environment lighting conditions that decreases the
localization systems robustness.

To avoid the above mentioned problem, some local-
ization systems are based on time-of-flight sensors
[20]. The use of time-to-flight sensors allows the
acquisition of depth information about the environ-
ment and presents a more robust system able to cope
with different light conditions. Moreover, the time-
of-flight cameras allow the capture of depth images,
where the sensor is able to receive a grid with depth
information from all field of view [1]. However, it is
expensive to implement this type of cameras in many
mobile robotic platforms.

Recently, the companies PrimeSense and Microsoft
developed a device primarily for video games, denom-
inated as Kinect, that combines a RGB and a depth
camera. Due to its low price and a straightforward way
to be connected with a computer, the Kinect device
became popular in mobile robotics community cre-
ating several different applications of mobile robots.
In [4, 10], mobile robot navigation systems are pro-
posed, based on data acquired by a Kinect sensor.
Also, Kinect depth images are central for a wheelchair
localization system reported in [27]. The combination
of RGB and depth images are also used, see [13, 15,
26] for details. However, these works are based on
EKF and particle filters, with the well-known stability
issues.

A very common problem in depth sensors, includ-
ing the Kinect depth sensor, is the existence of missing
data in signals, caused by IR (infrared) beams that
are not well reflected, not returning to the depth sen-
sor receiver. In [23], a method using the Principal
Component Analysis (PCA) methodology is presented
to avoid the problem of missing data in signals and
its performance is compared with other state-of-the-
art algorithms, concluding that the PCA algorithm
can be extended to reconstruct signals corrupted with
missing data, and presents a better performance (less
interpolation error) in an extended range of missing
data. The PCA [17] is an efficient algorithm that con-
verts the database into an orthogonal space creating

a database with a high compression ratio, when com-
pared with the amount of captured data. Moreover, the
PCA allows to develop localization systems that do
not depend on any predefined structure [2, 18], i.e,
does not need to detect any specific features about the
environment. In [22], PCA is used for terrain reference
navigation of underwater vehicles.

There are different approaches in installing cam-
eras to develop localization systems. The most com-
mon solution is to allow placement of cameras to look
around obtaining the corresponding position [4, 14,
21, 25], while some mobile robots use a single cam-
era looking upward [12, 16, 30]. Ceiling-based visual
positioning has the advantage that images can be con-
sidered without scaling and are static. This approach
was successfully implemented in [6, 9]. In general,
the transformation that relates two images obtained by
a mobile robot, to estimate its motion, is a perspec-
tive projection based in the pinhole camera model.
Ceiling-based visual positioning has the advantage
that, under the planar scene assumption and assuming
that the camera is orthogonal to the ceiling plane, the
image transformation to relate two images is defined
by just three parameters, a 2D translation and one
rotation. Moreover, the static scenario assumption is
usually valid for images of the ceiling.

While many localization systems uses the informa-
tion of extraction features to the localization of the
mobile robot in a structured environment [4, 16, 21],
the use of PCA allows the creation of a localization
system, in an unstructured environment, with a great
compression ratio and without the need of specific
feature extracting.

In this work, the main purpose is the experimen-
tal validation of [23], resorting to a mobile robot
self-localization system, using depth images corrupted
with missing data. The implemented position sensor
is based on an extension of the PCA algorithm able to
reconstruct corrupted signals through the orthogonal
space, which is fused in a Linear Parameter Varying
model, resorting to a sub-optimal linear Kalman fil-
ter. This approach presents advantages relative to the
usual EKF solution that in general has no guaran-
tees of stability, due to incorrect estimates used on the
linearization [7].

This paper is organized as follows: Section 2
presents the mobile robot platform and the motiva-
tion for the use of Kinect in the proposed localization
system. In Section 3 the principal component analysis
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Fig. 1 Mobile platform equipped with kinect sensor and
compass

for signals with missing data is detailed. For perfor-
mance analysis purposes, Section 4 presents experi-
mental depth image reconstruction results, using the
PCA algorithm for signals corrupted with different
ratios of missing data. In Section 5, an architecture
for mobile robot self-localization, composed by PCA
and Kalman filters is introduced, and the experimental
results for localization with missing data, estimation
stability, and localization in repeatability scenarios is
presented. Finally, Section 6 presents some conclu-
sions and unveils future work.

2 Model Platform

The experimental validation of the positioning system
proposed in this paper is performed resorting to a low
cost mobile robotic platform [5], with the configura-
tion of a Dubins car. A Microsoft Kinect is installed on
the platform, pointing upwards to the ceiling, together
with a digital compass, located on the extension arm

Fig. 2 RGB-D image of the ceiling view obtained by the kinect
installed onboard the mobile robot

Fig. 3 Captured depth image with corrupted data (left) and
reconstructed through PCA (right)

(robot rear part) to avoid the magnetic interference
from the motors, as depicted in Fig. 1.

The Kinect includes a RGB camera with a VGA
resolution (640 × 480 pixels) using 8 bits and a 2D
depth sensor (640 ×480 pixels) with 11 bits of resolu-
tion. The use of this sensor for mobile robots localiza-
tion could combine the capture of a RGB image and
a depth map about the environment, obtaining RGB-
D images, as shown in Fig. 2. This image depicts the
ceiling view captured by the Kinect installed onboard
the mobile robot. Note that it is possible to observe
both the 3D shape of the existing technical installa-
tions in the ceiling and its color.

The robot moves indoors, in buildings with some
information (e.g. building-related systems such as
HVAC, electrical and security systems, etc.). It is pos-
sible to use the signals captured by a Kinect looking
upward (RGB image, depth map or both) by an algo-
rithm that can provide mobile robot global position in
the environment.

Due to limitations found in image-based mobile
robot localization approaches, regarding lighting
changes, and aiming the development of an efficient
self-localization solution that can work in places with
uncontrolled lighting changes, only the Kinect depth
signal is used, resorting to an adaptation to the method
proposed in [6–8, 22] to the problem at hand.

However, as it is possible to observe in Fig. 2, due
to geometry and properties of some objects, that sev-
eral waves are not well reflected and, thus, can not
be detected by the depth sensor receiver. In the case
of Kinect, such a problem results in the existence of
points with null distance (0 mm) inside the data array
with the depth values (distances to various points in
the plane), that may lead to erroneous results in the
localization system. In this paper an extension of a
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Fig. 4 Captured depth image with added corrupted data (top) and reconstructed through PCA (bottom)

PCA-based position approach will be presented aim-
ing to cope with lighting changes common to usual
vision systems, to be experimentally validated.

3 PCA for Signals with Missing Data

PCA [17] is a methodology based on the Karhunen-
Loève (KL) transformation that is often used in appli-
cations that need data compression, like image and
voice processing, data mining, exploratory data anal-
ysis and pattern recognition. The data reduction is
obtained through the use of a database eigenspace
approximation by the best fit eigenvectors. This tech-
nique makes the PCA an algorithm that has a high
compression ratio and requires reduced computational

resources. The PCA algorithm is used as the mobile
robot position sensor in [7, 8].

The PCA eigenspace is created based on a set of M

stochastic signals xi ∈ R
N, i = 1, . . . , M acquired

by a Kinect depth sensor installed onboard the mobile
robot, considering an area with M mosaics in two
dimensional space, N = NxNy , where Nx and Ny are
the number of pixels in x and y axis of each mosaic,
respectively.

In the common PCA-based approaches, the eigen-
space of the set of acquired data is characterized by the
corresponding mean mx = 1

M

∑M
i=1 xi and covariance

Rxx = 1
M−1

∑M
i=1 (xi − mx)(xi − mx)T . However,

the existence of missing data in signal xi corrupts the
PCA mean value computation creating an orthogonal
space with erroneous data.

Fig. 5 Grid map and depth
image processing to create a
PCA eigenspace
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Fig. 6 Architecture of the
self-localization sensor

In the case where missing data occurs, the classical
approach to compute the covariance matrix, resorts to
a mean substitution operation. Thus, a vector l with
length N consisting of boolean values is used to mark
the real and missed data of a signal xi . Then, consider-
ing the jth component of acquired signal xi , the index
li(j) is set to 1 if the signal xi(j) is available and it is
set to 0 if there is a missing data.

Hence, to avoid the negative impact of the sen-
sor signals missing data in PCA-based approaches
performance, an extension to this methodology is pro-
posed in this paper, where instead of considering all
values of the M stochastic signals to compute the
previously mentioned, only the correct data is used
to compute the orthogonal space, characterized by
mx and Rxx , and the value corresponding to missing
data is neglected. Thus, the auxiliary counters c =∑M

i=1 li and C = ∑M
i=1 li liT are defined, based on the

auxiliary vector l defined before.
Considering the set with M signals, the mean

ensemble for the jth component is given by:

mx(j) = 1

c(j)

M∑

i=1

li(j)xi (j), j = 1, ..., N (1)

and the covariance element Rxx(j, k), {j, k} =
1, ..., N is computed as follows:

Rxx(j, k) = 1

C(j, k) − 1

M∑

i=1

li (j)li (k)yi(j)yi(k) (2)

where yi = xi − mx .
Considering the new mean ensemble and covari-

ance of the PCA database computed without cor-
rupted data in (1) and (2), the decomposition into
the orthogonal space follows the PCA algorithm clas-
sical approach, i.e. v = UT (x − mx). The matrix
U = [u1 u2 . . . uN ] should be composed by the N

orthogonal column vectors of the basis, verifying the
eigenvalue problem:

Rxxuj = λj uj , j = 1, ..., N, (3)

Matrix Rxx has a size of N × N . As there are
M images there are at most M − 1, rather than N2,
meaningful eigenvectors. The remaining eigenvectors
of Rxx will have associated eigenvalues of zero. As
M < N , the M − 1 eigenvectors may be efficiently
computed using Turk and Pentland method [29].

Assuming that the eigenvalues are ordered, i.e.
λ1 ≥ λ2 ≥ . . . ≥ λN , the choice of the first n �
N principal components leads to stochastic signals
approximation given by the ratio on the covariances
associated with the components, i.e.

∑
n λn/

∑
N λN .

Although a trade-off between the PCA discrimina-
tion and the data compression ratio can be observed, in
the selection of the number of principal components,
its relationship is non-linear. Thus, selecting only a
few principal components, it is possible to achieve a
high variability of the eigenspace, even with high com-
pression ratio. A larger number of eigenvectors would
provide minimal performance improvement, with an
increase of memory required.

Fig. 7 Block diagram of the position estimator
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Fig. 8 Block diagram of
the attitude and angular
slippage estimator

4 PCA-Based Depth Image Reconstruction

As mentioned in the Section 2, the self-localization
system proposed in this paper uses depth images cor-
rupted with missing data, captured from the ceiling.
Thus, to validate the concept of the image recon-
struction resorting to a PCA eigenspace, a test of
reconstructing a depth image corrupted with missing
data is performed.

In order to create the PCA eigenspace, a set of
125 depth images are captured along a grid map with
a distance of 0.3 m (in x and y axis) in an area of
5 m × 4.5 m. Considering that the Kinect depth sen-
sor has a resolution of 640 by 480 points, and with
the purpose of reducing the amount of data stored in
PCA eigenspace, the depth images are cropped to a
depth image with 120 by 160, extracting the central

area of the images, and transforming them into vectors
xi ∈ R

19200, i = 1, . . . , 125.
In order to test the depth image reconstruction using

the proposed extension of the PCA algorithm, a new
depth image is captured from the ceiling, corrupted
with about 15 % of missing data ratio. The depth
image is shown in left side of Fig. 3, where the black
pixels correspond to the missing data. Applying the
proposed algorithm, the depth image reconstruction
is performed, decomposing the captured corrupted
signals into the orthogonal space, obtaining the corre-
sponding loading, according to the following steps:

1. identify the non-corrupted data in the vector l;
2. build the auxiliary counters c and C;
3. substitute the corrupted data xi(j) by the corre-

sponding mean mx(j);

Fig. 9 Estimated position
along time without
corrupted data correction
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Fig. 10 Map with estimated position considering a ground truth
path, without corrupted data correction

4. decompose the signal after the mean substitution
into the orthogonal eigenspace v;

5. compute the reconstructed depth image recover-
ing the signals from the eigenspace computed
before.

Analyzing the depth images in Fig. 3, it is possible
to conclude that the PCA is able to construct a sim-
ilar depth image (right), removing all corrupt pixels
present in the original captured image (left). It is also
possible to observe that the pixels with non corrupted

data are not equal to the captured depth image. How-
ever, in this case, the PCA algorithm is performing tree
important tasks at same time: i) compression of the
acquisition database; ii) removing the corrupted data
of the depth image; iii) and creating a eigenspace to
compare the reconstructed depth image with the PCA
database, without explicit features extraction.

To analyze robustness of the corrupted depth
image reconstruction technique proposed, a new test
is performed, removing depth information from the
acquired data. The depth image reconstruction using
PCA is simulated, adding from 20 % to 80 % ran-
dom missing data. Figure 4 shows the captured depth
images with the added missing data on the top, and
the reconstructed images at the bottom. Analyzing the
results it is perceptible that the reconstruction of the
depth image, by the proposed PCA algorithm, pro-
vides good results until a missing data ratio of about
60 %. Further details on the reconstruction accuracy
will be presented next. However, observing the cor-
rupted depth images, it is possible to see that for higher
ratios of missing data, there is too much degradation
to reconstruct the corrupted image.

5 Concept Validation in 2D Localization

In order to solve the problem of 2D mobile robot
localization, a new PCA eigenspace is created with a

Fig. 11 Estimated position
along time
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Fig. 12 Map with estimated position considering a ground truth
path

set of captured depth images along a grid map with
a distance of 0.3 m (in x and y axis) in an area of
5 m × 4.5 m. This is a manual process to ensure
that all images are captured in the same direction and
the depth sensor is in the right grid position (Fig. 5).
The captured depth images are cropped with a cir-
cular mask allowing the rotation and comparison of
captured depth images when the robot is in the same
position, but with different attitude, during a mission.

In order to compress the amount of data, the depth
images are sampled with a compression ratio of 100 :
1 and converted into a vector that will be added to
PCA eigenspace. In [6, 7], the authors followed a sim-
ilar approach using a RGB camera, but the method
revealed to be sensitive to lighting changes.

During the mission, the signal x is decomposed
into the orthogonal space considering only the non-
corrupted data. Thus, before the projection of the
depth image into the orthogonal space, the mean sub-
stitution should be followed, i.e, all jth component of
the signal xi with corrupted data should be replaced
by the corresponding mean value mx(j). This method
removes the effect of the corrupted data in its decom-
position in the orthogonal space v = UT (x − mx).

The robot position x̂ and ŷ is obtained by finding a
given neighborhood δ, the mosaic whose eigenvector
is nearest to the acquired signal decomposed into the
orthogonal space:

∀i‖[x̂ŷ]T −[xiyi]T ‖2 < δ, rPCA = min
i

‖v−vi‖2; (4)

Given the mosaic i that verifies this condition, its
center coordinates [xi yi]T are selected as the robot
position, obtained by the PCA-based sensor.

Then, the mean substitution approach is used when
there is missing data in the depth signals coming from
the Kinect sensor. Just like during the creation of the
PCA eigenspace, it must be done before the applica-
tion of the PCA algorithm, i.e., all jth component of

Fig. 13 Evolution of the
Kalman filter gains:
position estimator (left) and
attitude estimator (right)
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Fig. 14 Evolution of the
attitude estimated
considering a ground truth
path
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the signal xi should be replaced by the corresponding
mean value mx(j).

During an experiment, the data captured from the
sensors (Kinect, compass and encoders) has been used
in a self-localization sensor based in two KF and one
PCA algorithm, as detailed in Fig. 6. The implemented
architecture allows the estimation of the robot atti-
tude and position, as well as the angular motion speed
and the robot angular slippage, using only the signals
obtained by the onboard sensors.

The following notation is used in Fig. 6:

– ψcompass - orientation angle given by the com-
pass;

– θrwencoder - angle given by the encoder of the right
wheel;

– θlwencoder - angle given by the encoder of the left
wheel;

– (x, y)PCA - coordinates given by the PCA sensor;
– (x̂, ŷ)robot - estimated robot coordinates in the

world referential;
– ω̂robot - estimated angular speed;
– ω̂slippage - estimated differential slippage.

Detailing the architecture of the self-localization
sensor presented in Fig. 6, the KF depicted on the left
of the figure implements the attitude optimal estima-
tor model that is responsible to estimate the mobile
robot attitude and the angular slippage (see Section 5.2
for details). Once all acquired depth images for the
PCA data-base are taken with the same orientation and
compressed with a circular crop (Fig. 5), then, during
a mission, the acquired depth images must be rotated
to zero degrees of attitude, using the compass angle,
and compressed with the same circular crop. The posi-
tion estimator (on the right of the figure) implements
a Linear Parameter-Varying (LPV) model as a func-
tion of the estimated angular speed in a KF, fusing it
with the position obtained by the PCA algorithm (see
Section 5.1 for details).

Resorting to this architecture, it is possible to esti-
mate the position, attitude and angular slippage of
the mobile robot with a global stable error dynamic.
The next subsections shows the models and estima-
tors implemented in this self-localization architecture.
These models and estimators may be found, with more
detail, in [7].

Fig. 15 Angular slippage
estimated
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5.1 Model for Position Estimation in 2D Localization

The classic differential drive mobile robot model is
given by

ẋ = u cos θ (5)

ẏ = u sin θ (6)

θ̇ = ω (7)

where u is the common mode speed, x and y are the
robot coordinates in the world referential, θ is the ori-
entation angle of the robot in the world referential and
ω is the angular speed.

However, the classic non-linear model for differen-
tial drive mobile robots can be rewritten considering
new state variables, becoming a Linear Parameter
Varying (LPV) model. Thus, differentiating (5)–(7):

ẍ = −u ω sin θ = −ωẏ (8)

ÿ = u ω cos θ = ωẋ (9)

θ̈ = ω̇ (10)

and choosing as state vector x = [x ẋ y ẏ]T , a
new LPV model for differential drive mobile robot is
obtained:

ẋ =

A
︷ ︸︸ ︷⎡

⎢
⎢
⎣

0 1 0 0
0 0 0 −ω

0 0 0 1
0 ω 0 0

⎤

⎥
⎥
⎦ x (11)

θ̇ = ω (12)

Considering the LPV model (11), (12) and assum-
ing that ω is constant between two sampling times
(zero order hold assumption), the follow discrete
model can be obtained (see [7] for more details):

x(k + 1) =

A(ω)
︷ ︸︸ ︷⎡

⎢
⎢
⎣

1 sin ωT
ω

0 1
ω

+ cos ωT
ω

0 cos ωT 0 − sin ωT

0 1
ω

− cos ωT
ω

1 sin ωT
ω

0 sin ωT 0 cos ωT

⎤

⎥
⎥
⎦

x(k) +

⎡

⎢
⎢
⎢
⎣

T 1−cos ωT

ω2 0 −ωT −sin ωT

ω2

0 sin ωT
ω

0 − 1−cos ωT
ω

0 ωT −sin ωT

ω2 T 1−cos ωT

ω2

0 1−cos ωT
ω

0 sin ωT
ω

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
G(ω)

μl(k)

(13)

y(k) =
[

1 0 0 0
0 0 1 0

]

︸ ︷︷ ︸
C

x(k) + γl(k) (14)

where T is the sampling time, μl is the discrete pro-
cess noise based on the step invariant method used and
γl is the noise present in the PCA position measure-
ments, both assumed as zero-mean white Gaussian
noise and uncorrelated.

Finally, in order to estimate the mobile robot posi-
tion, the Linear Parameter Varying (LPV) model (13),
(14) is fused with the position obtained by the PCA-
based position sensor, through the KF presented in
Fig. 7, where and x(k) and y(k) are the position
obtained by the PCA sensor in instant k and x̂(k) and
ŷ(k) are the estimated position in the same instant.

5.2 Model for Attitude and Angular Slippage
Estimation in 2D Localization

The model that describes the angular motion of the
differential drive mobile robot is:

ψ̇ = ω + s (15)

ṡ = 0 (16)

where ω is the angular speed, ψ is the attitude of
the robot and s is the angular slippage in differential
motion.

Considering the state vector θ = [ψ s]T , the
kinematic model in state space can be defined by:

θ̇ =
[

0 1
0 0

]

θ +
[

1
0

]

ω (17)

Assuming that signals processing is performed by a
digital processor, ω and ψ are constant between sam-
pling times (zero order hold assumption), it is possible
to obtain the discrete model of attitude:

θ(k+1)=

A
︷ ︸︸ ︷[

1 T

0 1

]

θ(k)+

B
︷ ︸︸ ︷[

T

0

]

ω(k)+

G
︷ ︸︸ ︷[

T T 2

2
0 T

]

μa(k)

(18)

y(k) = [
1 0

]

︸ ︷︷ ︸
C

θ(k) + γa(k) (19)

where μa is the discrete process noise and γa is
the noise present in the compass measurements, both
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Fig. 16 Distribution of the
estimated position error for
both axis
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assumed as zero-mean white Gaussian noise and
uncorrelated.

Applying a KF to the discrete model (18), (19), fol-
lowing the steps described in [7], the optimal attitude
and angular slippage estimator presented in Fig. 8 is
obtained, where ψ(k) is the angle of compass captured
in instant k, r is the radius of the wheels, l is the dis-
tance between wheels, αr(k) and αl(k) are the lengths
of the paths of left and right wheels (that can be read
directly from the encoders onboard) and ψ̂(k) and ŝ(k)

are the estimated attitude and angular slippage of the
robot, respectively.

Finally, the angular speed of the robot applied in
LPV (14) is obtained through a numerical difference
of the estimated attitude of the robot:

ω̂(k) = ψ̂(k) − ψ̂(k − 1)

T
(20)

5.3 Results for 2D Localization with Classical PCA
Algorithm

To observe the effect of corrupted data in the
mobile robot self-localization, the depth images cap-
tured along the grid, after being subsampled and
cropped with a circular mask, as presented before,
are compressed using the classical PCA algorithm.
The selection of the best eigenvectors is performing
through eigenvalues that exceed 85 % of the total
of the eigenvalues, creating an eigenspace with 60
eigenvectors.

To test the mobile robot self-localization perfor-
mance of the proposed approach in a environment,
several tests have been performed with the classical
lawnmower type trajectory, combining both straight
lines and curves, with a 0.1 m · s−1 robot speed and

Fig. 17 First captured depth image: original a, and with added imposed corrupted data ratio to a ratio of 40 % b, 60 % c and 80 % d
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Fig. 18 Estimated position
along time with 40 % of
imposed corrupted data
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5 Hz of sampling frequency. During the robot motion
the real mobile robot trajectory has been measured
allowing the comparison of the estimated position
with the real one (ground truth test).
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Fig. 19 Map with estimated position considering a ground truth
path, with 40 % of imposed corrupted data

Analyzing Fig. 9 it is possible to see that, due the
existence of missing data, the position obtained by the
PCA algorithm often gives incorrect values, causing
erroneous estimations in the self-localization system.
Figure 10 shows the results of the PCA position sen-
sor fused with the LPV model, in 2D localization.
Analyzing Fig. 10, it is possible to conclude that the
erroneous position obtained by the PCA, which is
caused by the corrupted data, provides in the estima-
tor a far localization than the described by the mobile
robot (ground truth path).

5.4 Results for 2D Localization

Following the PCA algorithm extension proposed in
Section 3, a new PCA eigenspace is created, com-
puting the mean ensemble and the signals covariance,
only with the non-corrupted data. Thus, choosing the
best eigenvectors, which eigenvalues exceed 85 %
of the total, an eigenspace with 30 eigenvectors is
created.

As it is possible to see in Fig. 11, the position
results obtained by the PCA algorithm is very close to
the ground truth trajectory. Therefore, fusing the kine-
matic model of the robot with the position obtained by
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Fig. 20 Estimated position
along time with 60 % of
imposed corrupted data
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PCA in the KF allows estimating position values with
a very good accuracy.

Figure 12 shows the position estimated with the
ground truth trajectory and the position obtained by
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Fig. 21 Map with estimated position considering a ground truth
path, with 60 % of imposed corrupted data

the odometry. Comparing the results of the odome-
try with the estimated position it is possible to see
an angular slippage in motion, that is increasing the
difference between the estimated attitude and the one
obtained by the odometry along time. This angu-
lar slippage is caused by systematic errors, such as
uncertainties in the dimensions of the wheels, eccen-
tric shaft problems, misalignment of the shafts, etc.
It is possible to observe that in the initial part of
the trajectory the estimator obtains a result close to
the odometry. However, the localization system can
approximate the estimated position with the ground
truth trajectory.

The Kalman gains stabilization along time are
shown in Fig. 13, where it is possible to see that they
converge in few sampling instants.

Analyzing the results of the attitude estimator in
Fig. 14, it is possible to observe that the estimated
attitude is very close to the ground truth, allowing
to conclude that this Kalman filter provides results
with good accuracy. Furthermore, analyzing Fig. 15,
it is possible to observe the existence of an angular
slippage of −0.5 rad · s−1 (positive for slippage in
clockwise direction), that is detected at 40 s by the atti-
tude estimator. Looking at Fig. 11 after 40 s (instant
which is detected angular slippage), the results of the
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Fig. 22 Uncertainty of the
PCA- based position sensor
with corrupted data
correction
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position estimator are closer to the ground truth path
than the odometry.

Finally, analyzing the histograms of Fig. 16, it is
possible to conclude that the statistical distribution of
the estimated position errors is approximately Gaus-
sian with a mean close to zero. Moreover, comparing
the variation of the distribution with the distance of
the grid map acquired to create the PCA eigenspace
(0.3 m), it is possible to see that, the proposed self-
localization system is able to estimate the position
with an error less than the distance between the
acquired depth images.

5.5 Results for 2D Localization with Imposed
Corrupted Data

The results presented in the previous section show
the performance of the proposed algorithm in mobile
robot localization considering depth images corrupted
with missing data not exceeding 13 % (Fig. 11). The
presence of the corrupted data in depth images is due
to the geometry and properties of some objects that
disturb several waves, causing the presence of the

missing data. Therefore, as it is possible to observe in
Fig. 11, the presence of corrupted data in the depth
images is completely random.

Thus, in order to analyse the robustness of the pro-
posed PCA algorithm in the presence of missing data,
new self-localization tests are performed simulating
depth images with missing data ration between 20 %
and 90 %. For this test the same data captured from the
sensors used in the previous Section is considered, but
random corrupted data on the captured depth images
is added. The amount and position of the missing
data present in the captured depth images is analyzed,
guaranteeing that the simulated corrupted data are ran-
domly added in the non-corrupted data, keeping the
same ratio in all depth images along the experiment.
Figure 17 shows the original captured depth image in
the initial position and the transformed data with the
missing data added randomly to a ratio of 40 %, 60 %
and 80 % of the signal length.

Analyzing the results, Fig. 18 shows that the pro-
posed method is able to find depth image close to the
captured along the travel, even with a ratio of 40 %
corrupted data in all signals. Thus, the fusion of the

Table 1 Initial conditions of position and attitude stability validation in a lawn-mower trajectory

x0 [m] y0 [m] ψ0[◦]

Robot position 3.9 2.4 90

Re-localization 1 4.4 2.4 0

Re-localization 2 4.4 1.9 315

Re-localization 3 2.9 1.6 225
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Fig. 23 Results of stability
tests considering a wrong
initial position and attitude
estimates (map 2D)
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PCA-based position with the KF allows the estima-
tion with accuracy, presenting similar results to the
obtained with the original data, where the ratio of
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Fig. 24 Results of stability tests considering a wrong initial
position and attitude (estimation along time)

missing data is less than 15 %, allowing the estimation
with accuracy, after the stabilization of the angular
slippage.

Analyzing the results using depth images with 60 %
of missing data ratio presented in Fig. 20, it is possible
to observe that the proposed algorithm is able to find
the correct eigenvector in most of the acquired depth
images. However, Fig. 20 also shows instants of time
in which, given the large amount of data corrupted (see

Fig. 25 Ceiling view of the environment with periodic
elements
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Fig. 26 Radius of searching neighborhood around the robot
along time

Fig. 17), the algorithm found principal components
similar to another captured image in a far location.
This localization error, constant for several sampling
times, led the KF to provide biased estimates, as it can
be seen in Fig. 21.

Finally, Fig. 22 shows the estimation uncertainty
of the PCA-based position sensor. As it is possible to
observe, that the measurement accuracy is related to
the ratio of corrupt data, but its relation is non-linear.
The estimation uncertainty is equal in x and y coor-
dinates to low ratio of corrupt data, while for high
rations, the accuracy is different for both axis. More-
over, analyzing the results presented in Figs. 18, 19, 20

and 21 and the estimation uncertainty in Fig. 22 it is
possible to conclude that, the extension of PCA-based
position sensor is able to estimate an accurate position,
considering depth images with corrupted data until
50 % of ratio.

5.6 Global Stability with Wrong Initial Position
and Attitude

The self-localization system stability is an important
characteristic as it ensures that the estimator always
converges to the real value for any initial condition.
Considering that the proposed self-localization system
is composed by two KF, the system global conver-
gence is only achieved if each one is globally stable.
For this purpose, three incorrect initial conditions for
both position and attitude have been considered, as it
is detailed in Table 1.

The results, depicted in Fig. 23, show that consid-
ering the incorrect initial conditions, the robot would
follow, in open-loop, the same Lawn-Mower trajec-
tory, but in a different direction. Considering these
conditions, the position estimator could diverge from
the robot real position. Figure 24 shows that KF results
are always stable and exhibit fast convergence to the
ground truth.

Fig. 27 Estimated position
along time, searching in a
neighborhood
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Fig. 28 Map with
estimated position
considering a ground truth
path, searching in a
neighborhood

0 0.9 1.8 2.7 3.6 4.5 5.4 6.3 7.2 8.1 9 9.9 10.811.712.613.514.415.316.217.1 18 18.9
0

0.9

1.8

2.7

3.6

4.5

5.4

6.3

7.2

8.1

9

9.9

10.8

X [m]

Y
 [

m
]

start

finish

Ground truth path
Odometry
Estimated

5.7 2D Localization Results for a Longer Trajectory

After the validation of the proposed PCA-based self-
localization system, considering depth images cor-
rupted with missing data, another test is performed
considering the motion of the robot in a large area
and longer trajectories. Thus, a set of 1115 snap-
shots with depth images being captured in an area of
18.9 m × 9.6 m, considering the same grid map with
a distance of 0.3 m and with the robot in the same
attitude (see Fig. 5). The captured depth images are
cropped with the same circular mask and sampled with
a compression ratio of 100 : 1 and converted into
a vector that will be added to the PCA eigenspace.
Therefore, analyzing the corresponding PCA eigen-
values and selecting the same number of eigenvectors
(30) of the previous experience, the selected compo-
nents explain the images variability in an excess of
93 %. This corresponds to a reduction of 99.9 % in
the memory resources when compared with the capac-
ity needed to store the captured database, and 98.2 %
when compared with the size after the subsample.

Once the physical structure of the environment
when the test is performed is composed by equal
equipments (pipes, air treatment units, light fixtures)
distributed periodically along the ceiling, the mapping
area incrementation to 18.9 m×9.6 m, led the acquisi-
tion of similar images at different locations (Fig. 25).
In consequence of the existence of periodic scenarios,

when the PCA position sensor is comparing the eigen-
vector with all eigenspace, it is easily possible to find
depth images, similar to the image captured during a
mission, in a far localization. This causes large uncer-
tainty in the position estimated by the PCA algorithm
and, in consequence, in all self-localization system.

To solve the problem localization in scenarios with
periodic elements, the searching considering a neigh-
borhood δ around the mobile robot, proposed in (4)
is applied. In the performed test, the neighborhood
radius is variant and defined based on the eigen-
vectors distance obtained in last position estimation,
through the linear relation δ = fδ · rPCA. Consider-
ing the repeatability characteristics of the environment
and the eigenvectors distance, the linear relationship
is tunned to fδ = 5 × 10−4. This value ensures
the searching of the nearest eigenvector in a radius
between 1.5 m and 6.5 m around the mobile robot
position estimated {x̂(k), ŷ(k)}, as depicted in Fig. 26.

To test the mobile robot self-localization perfor-
mance, considering periodic scenarios, several tests
have been performed along a predefined path with
length of 93 m, combining both straight lines and
curves and traveling two laps inside the large mapped
area, following the same method of the last exper-
iments. Thus, the robot is moving with a speed of
0.1 m · s−1 and depth data is acquired with a 2.5 Hz
of sampling rate and the real mobile robot trajectory
is measured allowing the comparison of the estimated
position with the real one (ground truth test).
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Figures 27 and 28 present the results of the self-
localization sensor, considering the PCA searching in
a neighborhood, the KF position estimator and the real
path of the robot, measured in the ground. The results
of Fig. 27 show that the PCA is able to achieve an
accurate position of the robot, allowing good perfor-
mance on the global self-position sensor. Notice that
the precision of the grid with depth images has 0.3 m

of distance.
In Fig. 28 it is possible to see that the self-position

sensor is able to converge the estimated position with
the ground truth path while the odometry of the robot
diverges completely from the real path. The blue cir-
cles represents the position uncertainty obtained by
the Kalman filter. As it is possible to observe in
Fig. 28, when the robot is in the top area, the uncer-
tainty increases. The performance degradation occurs
due to the fact that in this area the celling has less
information. Nevertheless, Figs. 27 and 28 show that
the robot is able to estimate its own position.

6 Conclusions

The existence of missing data in depth images is
sometimes inevitable and it can induce a positioning
system to an erroneous localization. In this paper an
extension of a PCA methodology aiming to avoid the
negative impact of missing data in signals has been
developed and experimentally validated, allowing the
follow advantages i) compression of the acquisition
database; ii) corrupted data remotion in the depth
image; and iii) and creation of new eigenvectors to
compare the reconstructed depth image with the PCA
database.

The proposed enhanced PCA-based localization
system has been applied in a mobile robot localization
system based on a Kinect sensor installed onboard,
looking upwards to the ceiling, where the depth sensor
often provides signals with missing data, caused by IR
beams that not were reflected.

All tests were successfully performed, allowing
to conclude that the proposed approach is useful in
a number of mobile robotics applications where the
existence of missing data is inevitable and causes
a localization systems performance degradation. The
robustness test allows to conclude that the proposed
algorithm is able to estimate an accurate position,

considering depth images with corrupt data ratio up
to 50 %. The method has been tested in a environ-
ment with equal equipment installed periodically in
the ceiling at different positions, causing repeatable
scenarios in the acquired depth images during the
robot missions. Searching for the closest vector in a
neighborhood demonstrates the ability of PCA to be
implemented in a system localization with environ-
ment repeatability. Moreover, the proposed method
allows to validate the application of the Kinect depth
sensor in a mobile robot localization system based on
a extension of a classical PCA algorithm to operate in
unstructured environments.

The integration of the PCA-based position sensor
with linear Kalman filters allows to obtain an local-
ization system and globally stable, under the Gaussian
approach. The method was successfully validated in
a self-localization system, using only onboard sensors
and estimates the position with a global stable error
dynamics.

In the future, the use of PCA for attitude esti-
mation will be considered and implemented in the
self-localization system, avoiding the use of the dig-
ital compass. As next step, the proposed localization
method will be implemented in a path following con-
trol approach, where the self-localization system will
be integrated in a control close loop. Later, in order
to increase the self-knowledge about the place, the
proposed PCA algorithm will be updated to create a
dynamic PCA database. This development will allow
an architecture able to perform different tasks like
obstacle avoidance, robot-human interaction, rescue
activities or integration in a multi-robots platform for
collaborative work.
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